搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层膜结构载磁微泡声散射特性

张雅婧 王铭浩 雷照康 申文洁 马嫣嫱 莫润阳

引用本文:
Citation:

多层膜结构载磁微泡声散射特性

张雅婧, 王铭浩, 雷照康, 申文洁, 马嫣嫱, 莫润阳

Acoustic scattering properties of multilayer membrane structured magnetic microbubbles

Zhang Ya-Jing, Wang Ming-Hao, Lei Zhao-Kang, Shen Wen-Jie, Ma Yan-Qiang, Mo Run-Yang
cstr: 32037.14.aps.71.20220847
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 搭载有磁性纳米颗粒的包膜微泡, 作为一种新型试剂在多模造影、溶栓治疗及靶向药物输运等多领域得以应用及研究. 常通过原位测量技术进行微泡研究, 而散射解析模型是声反演技术的基础. 由空气内核、均匀悬浮磁纳米颗粒的磁流体层及磷脂外层组成多膜层结构载磁微泡, 考虑磁流体密度变化及磷脂层黏弹性, 通过简正级数法求解多层结构微泡各区域的散射声场. 将载磁微泡散射模型与其他气泡进行对比, 并数值分析载磁微泡共振散射特性, 包括初始半径、磁纳米颗粒体积分数、磁流体层厚度及磷脂层特性参数等对微泡散射影响. 结果表明: 当膜层中磁纳米颗粒的体积分数α不超过0.1时, 颗粒对微泡共振散射的影响具有两面性, 既可增强也可减弱散射, 主要取决于微泡半径; 存在一个临界微泡半径值, 微泡半径超过此临界则颗粒将增强微泡散射, 反之减弱; 微泡半径一定, α不超过0.1时, α取值越高微泡散射越强; 膜层材料的拉梅常数和厚度越小的同尺度微泡散射更强. 该研究对载磁微泡结构优化设计、原位监测及诊疗应用有理论意义.
    Normal ultrasound contrast agents (UCAs) loaded with magnetic nanoparticles are called magnetic microbubbles (MMBs), which can be used in multimodal imaging, thrombolytic therapy, and targeted drug delivery. The MMBs are often studied by in situ measurement techniques, however scattering model is the basis of inversion techniques. Therefore, we develop a scattering model of multilayer structured MMBs with magnetic fluid inner layer and phospholipid outer layer, in which outer layer’s viscoelasticity and the effect of nanoparticles on inner layer’s density are considered, while scattered sound fields in each region are obtained by solving normal series. The MMB model is compared with other bubbles, and its acoustic scattering characteristics are analyzed numarically, including the effects of radius, magnetic nanoparticle volume fraction, inner layer thickness and outer layer characteristics parameters. The results show that when the volume fraction α of magnetic nanoparticles in the inner layer does not exceed 0.1, magnetic nanoparticles have a two-sided effect on resonant scattering of MMBs, depending mainly on its radius, and the bubble has a critical radius value. If the radius of MMBs exceeds this critical value, the particles will enhance scattering, on the contrary, if the radius of MMBs is smaller than this critical value, the particles will reduce scattering; for a given microbubble radius, when α is not more than 0.1, the larger the α value, the stronger the resonant scattering of MMBs will be; the smaller the thickness of the inner film layer and outer film layer or the Larmé constant, the stronger the scattering will be. This study provides a theoretical guidance for the optimal structural design of MMBs and its in situ monitoring and therapeutic applications.
      通信作者: 莫润阳, mmrryycn@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074238, 11974232, 11774212)资助的课题.
      Corresponding author: Mo Run-Yang, mmrryycn@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074238, 11974232, 11774212)
    [1]

    Dhiman C, Pankaj J, Kausik S 2005 Phys. Fluids 17 100603Google Scholar

    [2]

    Averkiou M A, Bruce M F, Powers J E, Sheeran P S, Burns P N 2019 Ultrasound Med. Biol. 46 3Google Scholar

    [3]

    Gramiak R, Shah P M 1968 Invest. Radiol. 3 5Google Scholar

    [4]

    Sirsi S, Borden M 2009 Bubble Sci. Eng. Technol. 1 1Google Scholar

    [5]

    Liu Y, Yang F, Yuan C X, Li M X, Wang T T, Chen B, Jin J, Zhao P, Tong J Y, Luo S H, Gu N 2017 ACS Nano 11 2Google Scholar

    [6]

    Yang F, Wang Q, Gu Z X, Fang K, Marriott G, Gu N 2013 ACS Appl. Mater. Interfaces 5 18Google Scholar

    [7]

    Wen H, Fang Y, Wu Y H, Wen S, Chen P, Zhang Y, Gu N 2012 Mater. Lett. 68 22Google Scholar

    [8]

    Mulvana H, Eckersley R J, Tang M X, Pankhurst Q, Stride E 2012 Ultrasound Med. Biol. 5 38Google Scholar

    [9]

    Yang F, Li Y X, Chen Z P, Zhang Y, Wu J R, Gu N 2009 Biomaterials 30 23Google Scholar

    [10]

    Park J I, Jagadeesan D, Williams R, Oakden W, Chung S, Stanisz G J, Kumacheva E 2010 Acs Nano 4 11Google Scholar

    [11]

    Owen J, Pankhurst Q A, Stride E 2012 Int. J. Hyperthermia 28 4Google Scholar

    [12]

    Beguin E, Gray M D, Logan K A, Nesbitt H, Sheng Y J, Kamila S, Barnsley L C, Bau L, McHale A P, Callan J F, Stride E 2020 J. Controlled. Release. 317 23Google Scholar

    [13]

    Victor M S, Carugo D, Barnsley L C, Owe J, Coussios C C, Stride E 2017 Phys. Med. Biol. 62 18Google Scholar

    [14]

    Sun Y, Zheng Y Y, Ran H T, et al. 2012 Biomaterials 33 24Google Scholar

    [15]

    Beguin E, Bau L, Shrivastava S, Stride E 2019 ACS Appl. Mater. Interfaces 11 2Google Scholar

    [16]

    Yang F, Gu Z X, Jin X, Wang H Y, Gu N 2013 Chin. Phys. B 22 104301Google Scholar

    [17]

    Xu G, Lu H M, Yang H Y, Li D, Liu R, Su M, Jin B, Li C C, Lü T, Du S D, Yang J Y, Qiu W B, Mao Y, Li F 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68 12Google Scholar

    [18]

    Gu Y Y, Chen C Y, Tu J, Guo X S, Wu H Y, Zhang D 2016 Ultrason. Sonochem. 29 309Google Scholar

    [19]

    陈九生, 朱哲民 2005 声学学报 30 5Google Scholar

    Chen J S, Zhu Z M 2005 Acta Acust. 30 5Google Scholar

    [20]

    Alexandra M P, Thomas C W 2021 J. Acoust. Soc. Am. 149 4Google Scholar

    [21]

    Dong X J, Su M X, Cai X S 2012 Particuology 1 1Google Scholar

    [22]

    Song X, Loskutova K, Chen H J, Shen G F, Grishenkov D 2021 J Acoust. Soc. Am. 150 3Google Scholar

    [23]

    赵丽霞, 王成会, 莫润阳 2021 70 014301Google Scholar

    Zhao L X, Wang C H, Mo R Y 2021 Acta Phys. Sin. 70 014301Google Scholar

    [24]

    Zhao L X, Shi H M, Bello I, Hu J, Wang C H, Mo R Y 2022 Chin. Phys. B 31 034302Google Scholar

    [25]

    史慧敏, 莫润阳, 王成会 2022 71 084302Google Scholar

    Shi H M, Mo R Y, Wang C H, 2022 Acta Phys. Sin. 71 084302Google Scholar

    [26]

    史慧敏, 胡静, 王成会, 凤飞龙, 莫润阳 2021 70 214303Google Scholar

    Shi H M, Hu J, Wang C H, Feng F L, Mo R Y 2021 Acta Phys. Sin. 70 214303Google Scholar

    [27]

    Chen J, Zhao L X, Wang C H, Mo R Y 2021 J. Magn. Magn. Mater. 538 168293Google Scholar

    [28]

    Hosseini S M, Ghasemi E, Fazlali A, Henneke D E 2012 J. Nanopart. Res. 14 858Google Scholar

  • 图 1  MMBs物理模型

    Fig. 1.  Physical model of MMBs.

    图 2  球形单泡散射模型对比

    Fig. 2.  Comparison of scattering models for spherical single bubbles.

    图 3  MMBs的(a)共振曲线及(b)共振散射(σ vs. f )

    Fig. 3.  (a) Resonance curves and (b) resonance scattering (σ vs. f ) of MMBs.

    图 4  α = 0.1与α = 0两种微泡的共振散射截面 (a) σmaxR3变化的曲线; (b) ΔR3的关系

    Fig. 4.  Scattering cross sections of bubbles when α = 0.1 and α = 0: (a) The curves of σmax vs. R3; (b) the relationship of Δ and R3.

    图 5  求解频率曲线的两种方法对比

    Fig. 5.  Comparison of two methods for solving frequency curves.

    图 6  R3 = 5 μm时, f0, σmaxα的关系 (a) f0 vs. α; (b) σmax vs. α

    Fig. 6.  Relationships between f0, σmax and α with R3 = 5 μm, respectively: (a) f0 vs. α; (b) σmax vs. α.

    图 7  R3 = 5 μm时, f0, σmaxd1的关系 (a) f0 vs. d1; (b) σmax vs. d1

    Fig. 7.  Relationships between f0, σmax and d1 with R3 = 5 μm, respectively: (a) f0 vs. d1; (b) σmax vs. d1.

    图 8  R3 = 5 μm时, f0, σmaxμv的关系 (a) f0 vs. μv; (b) σmax vs. μv

    Fig. 8.  Relationship between f0, σmax and μv with R3 = 5 μm, respectively: (a) f0 vs. μv; (b) σmax vs. μv.

    表 1  载磁微泡结构及各区域介质参数

    Table 1.  Structure of MMBs and the media parameters.

    区域
    名称几何尺寸材料参数
    1空气0 < r < R1ρ1, c1
    2磁流体层R1 < r < R2,
    层厚d1 ($\ll $R1)
    ρ2, c2
    3磷脂薄层R2 < r < R3,
    层厚d2 ($\ll $R1)
    ρ3, c3d, c3s,
    λe, λv, µe, µv
    4r > R3ρ4, c4
    下载: 导出CSV
    Baidu
  • [1]

    Dhiman C, Pankaj J, Kausik S 2005 Phys. Fluids 17 100603Google Scholar

    [2]

    Averkiou M A, Bruce M F, Powers J E, Sheeran P S, Burns P N 2019 Ultrasound Med. Biol. 46 3Google Scholar

    [3]

    Gramiak R, Shah P M 1968 Invest. Radiol. 3 5Google Scholar

    [4]

    Sirsi S, Borden M 2009 Bubble Sci. Eng. Technol. 1 1Google Scholar

    [5]

    Liu Y, Yang F, Yuan C X, Li M X, Wang T T, Chen B, Jin J, Zhao P, Tong J Y, Luo S H, Gu N 2017 ACS Nano 11 2Google Scholar

    [6]

    Yang F, Wang Q, Gu Z X, Fang K, Marriott G, Gu N 2013 ACS Appl. Mater. Interfaces 5 18Google Scholar

    [7]

    Wen H, Fang Y, Wu Y H, Wen S, Chen P, Zhang Y, Gu N 2012 Mater. Lett. 68 22Google Scholar

    [8]

    Mulvana H, Eckersley R J, Tang M X, Pankhurst Q, Stride E 2012 Ultrasound Med. Biol. 5 38Google Scholar

    [9]

    Yang F, Li Y X, Chen Z P, Zhang Y, Wu J R, Gu N 2009 Biomaterials 30 23Google Scholar

    [10]

    Park J I, Jagadeesan D, Williams R, Oakden W, Chung S, Stanisz G J, Kumacheva E 2010 Acs Nano 4 11Google Scholar

    [11]

    Owen J, Pankhurst Q A, Stride E 2012 Int. J. Hyperthermia 28 4Google Scholar

    [12]

    Beguin E, Gray M D, Logan K A, Nesbitt H, Sheng Y J, Kamila S, Barnsley L C, Bau L, McHale A P, Callan J F, Stride E 2020 J. Controlled. Release. 317 23Google Scholar

    [13]

    Victor M S, Carugo D, Barnsley L C, Owe J, Coussios C C, Stride E 2017 Phys. Med. Biol. 62 18Google Scholar

    [14]

    Sun Y, Zheng Y Y, Ran H T, et al. 2012 Biomaterials 33 24Google Scholar

    [15]

    Beguin E, Bau L, Shrivastava S, Stride E 2019 ACS Appl. Mater. Interfaces 11 2Google Scholar

    [16]

    Yang F, Gu Z X, Jin X, Wang H Y, Gu N 2013 Chin. Phys. B 22 104301Google Scholar

    [17]

    Xu G, Lu H M, Yang H Y, Li D, Liu R, Su M, Jin B, Li C C, Lü T, Du S D, Yang J Y, Qiu W B, Mao Y, Li F 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68 12Google Scholar

    [18]

    Gu Y Y, Chen C Y, Tu J, Guo X S, Wu H Y, Zhang D 2016 Ultrason. Sonochem. 29 309Google Scholar

    [19]

    陈九生, 朱哲民 2005 声学学报 30 5Google Scholar

    Chen J S, Zhu Z M 2005 Acta Acust. 30 5Google Scholar

    [20]

    Alexandra M P, Thomas C W 2021 J. Acoust. Soc. Am. 149 4Google Scholar

    [21]

    Dong X J, Su M X, Cai X S 2012 Particuology 1 1Google Scholar

    [22]

    Song X, Loskutova K, Chen H J, Shen G F, Grishenkov D 2021 J Acoust. Soc. Am. 150 3Google Scholar

    [23]

    赵丽霞, 王成会, 莫润阳 2021 70 014301Google Scholar

    Zhao L X, Wang C H, Mo R Y 2021 Acta Phys. Sin. 70 014301Google Scholar

    [24]

    Zhao L X, Shi H M, Bello I, Hu J, Wang C H, Mo R Y 2022 Chin. Phys. B 31 034302Google Scholar

    [25]

    史慧敏, 莫润阳, 王成会 2022 71 084302Google Scholar

    Shi H M, Mo R Y, Wang C H, 2022 Acta Phys. Sin. 71 084302Google Scholar

    [26]

    史慧敏, 胡静, 王成会, 凤飞龙, 莫润阳 2021 70 214303Google Scholar

    Shi H M, Hu J, Wang C H, Feng F L, Mo R Y 2021 Acta Phys. Sin. 70 214303Google Scholar

    [27]

    Chen J, Zhao L X, Wang C H, Mo R Y 2021 J. Magn. Magn. Mater. 538 168293Google Scholar

    [28]

    Hosseini S M, Ghasemi E, Fazlali A, Henneke D E 2012 J. Nanopart. Res. 14 858Google Scholar

计量
  • 文章访问数:  5912
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-05-22
  • 上网日期:  2022-09-08
  • 刊出日期:  2022-09-20

/

返回文章
返回
Baidu
map