搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚甲基丙烯酸甲酯的冲击破碎扩散特性

苗春贺 袁良柱 陆建华 王鹏飞 徐松林

引用本文:
Citation:

聚甲基丙烯酸甲酯的冲击破碎扩散特性

苗春贺, 袁良柱, 陆建华, 王鹏飞, 徐松林

Deformation evolution and diffusion characteristics of polymethyl methacrylate under impact loading

Miao Chun-He, Yuan Liang-Zhu, Lu Jian-Hua, Wang Peng-Fei, Xu Song-Lin
PDF
HTML
导出引用
  • 应用霍普金森压杆(SHPB)实验装置, 通过改变透射杆为钢杆和铝杆, 对立方体聚甲基丙烯酸甲酯(PMMA)试样和两种梯台PMMA试样进行动态压缩实验. 利用高速摄影记录试样的压缩过程, 并结合力位移曲线分析试样的破碎过程, 探讨了冲击载荷作用下PMMA试样变形和广义扩散阻力的演化. 结果表明: 试样的破坏模式主要为接触端局部产生失效阵面, 然后失效阵面向试样内部扩展. 立方体试样在低速冲击下, 失效阵面优先在透射端产生; 在高速冲击下, 失效阵面在入射端先产生. 通过改变试样形状和透射杆材质后, 阵面的产生存在明显的弛豫现象, 并且失效阵面仅在入射端产生. 梯台试样破碎前的压缩变形是非均匀的, 试样内部应力状态和变形状态随着截面增加逐渐变小, 并且呈线性扩散分布. 通过应变分布结合剪切激活扩散方程, 得到失效阵面扩散过程中的广义扩散阻力分布情况; 失效阵面前后广义扩散阻力先增加后减小, 阻力的幅值与局部应变能的释放有关.
    Dynamic compression experiments on cubic polymethyl methacrylate (PMMA) specimens and two kinds of trapezoid PMMA specimens are carried by changing the transmission bars into steel bar and aluminum bar on the experimental device of split Hopkinson pressure bar (SHPB). The compression processes of PMMA specimens are recorded by high-speed photography, and the breakage processes of PMMA specimens are analyzed based on the force displacement curves and high-speed images. The evolutions of deformation and diffusion resistances of PMMA specimens under impact loading are discussed. The results show that the failure of the sample is caused mainly by the partial failure front at the contact end, and then the failure front propagates to the inside of the sample, leading the sample to break. The failure front of cubic sample is generated preferentially at the transmission end under low speed impact and at the incident end under the higher speed impact. After changing the shape of the specimen and the material of the transmission bar, the relaxation phenomenon is prominent, and the failure front occurs only at the incident end. The compressive deformation of the trapezoid sample before breakage is non-uniform, and the stress and strain in the sample gradually decrease with the increase of the cross section, and show a linear diffusion distribution. The strain distribution and shear activation diffusion equation are used to obtain the generalized diffusion resistance distribution of the failure front. The generalized diffusion resistance increases first in front of the failure front and decreases after the failure front, and the amplitude of the generalized diffusion resistance is related to the release of local strain energy.
      通信作者: 徐松林, slxu99@ustc.edu.cn
    • 基金项目: 高压物理与地震科技联合实验室室开放基金 (批准号: 2019HPPES01)和国家自然科学基金(批准号: 11672286, 11872361, 11602267) 资助的课题.
      Corresponding author: Xu Song-Lin, slxu99@ustc.edu.cn
    • Funds: Project supported by the Opening Foundation of the United Laboratory of High-Pressure Physics and Earthquake Science, China (Grant No. 2019HPPES01) and the National Natural Science Foundation of China (Grant Nos. 11672286, 11872361, 11602267).
    [1]

    徐松林, 单俊芳, 王鹏飞 2020 现代应用物理 11 30101Google Scholar

    Xu S L, Shan J F, Wang P F 2020 Mod. Appl. Phys. 11 30101Google Scholar

    [2]

    马棋棋, 熊迅, 郑宇轩, 周风华 2019 高压 33 044101Google Scholar

    Ma Q Q, Xiong X, Zheng Y X, Zhou F H 2019 Chin. J. High Pressure Phys. 33 044101Google Scholar

    [3]

    Huang J, Xu S, Hu S 2013 Rock Mech. Rock Eng. 47 1727

    [4]

    陈兴, 马刚, 周伟, 赖国伟, 来志强 2018 67 146102Google Scholar

    Chen X, Ma G, Zhou W, Lai G W, Lai Z Q 2018 Acta Phys. Sin. 67 146102Google Scholar

    [5]

    Jiang H B, Xu S L, Shan J F, Wang D R, Liu Y G, Zhou L J, Wang P F 2019 Powder Technol. 353 359Google Scholar

    [6]

    Shan J, Xu S, Liu Y G, Zhou L J, Wang P F 2018 Powder Technol. 330 317Google Scholar

    [7]

    Potapov A V, Campbell C S 1997 Powder Technol. 93 13Google Scholar

    [8]

    Rasorenov S V, Kanel G I, Fortov V E, Abasehov M M 1991 Int. J. High Pressure Res. 6 225Google Scholar

    [9]

    Espinosa H D 1998 Mech. Mater. 29 219Google Scholar

    [10]

    冯晓伟, 李俊承, 王洪波, 常敬臻 2016 65 166201Google Scholar

    Feng X W, Li J C, Wang H B, Chang J Z 2016 Acta Phys. Sin. 65 166201Google Scholar

    [11]

    Anderson Jr C E, Bigger R P, Weiss C E 2014 Int. J. Appl. Glass Sci. 5 374Google Scholar

    [12]

    Huang J Y, Li Y, Liu Q C, Zhou X M, Liu L W, Liu C L, Zhu H M, Luo S N 2015 Phys. Rev. B 92 144101Google Scholar

    [13]

    Sheikh M Z, Atif M, Li Y L, Zhou F H, Raza M A, Dar U A, Gao G Z, Wang Y M 2021 Constr. Build. Mater. 288 123088Google Scholar

    [14]

    易洪昇, 徐松林, 单俊芳, 张鸣 2017 爆炸与冲击 37 913Google Scholar

    Yi H S, Xu S L, Shan J F, Zhang M 2017 Explosion and Shock Waves 37 913Google Scholar

    [15]

    宋一平, 苗春贺, 单俊芳, 王鹏飞, 徐松林 2022 爆炸与冲击 42 073103Google Scholar

    Song Y P, Miao C H, Shan J F, Wang P F, Xu S L 2022 Explosion and Shock Waves 42 073103Google Scholar

    [16]

    方继松, 王珠, 熊迅, 郑宇轩, 周凤华 2020 高压 34 014101Google Scholar

    Fang J S, Wang Z, Xiong X, Zheng Y X, Zhou F H 2020 Chin. J. High Pressure Phys. 34 014101Google Scholar

    [17]

    Miao C H, Xu S L, Song Y P, Xie Y S, Yuan L Z, Wang P F 2022 Powder Technol. 397 117081Google Scholar

    [18]

    Liu D, Shen L, Guillard F, Einav I 2016 Int. J. Impact Eng. 93 222Google Scholar

    [19]

    简世豪, 苗春贺, 张磊, 单俊芳, 王鹏飞, 徐松林 2021 高压 35 024202Google Scholar

    Jian S H, Miao C H, Zhang L, Shan J F, Wang P F, Xu S L 2021 Chin. J. High Pressure Phys. 35 024202Google Scholar

    [20]

    Xing H Z, Zhang Q B, Braithwaite C H, Pan B, Zhao J 2017 Rock Mech. Rock Eng. 50 1611Google Scholar

    [21]

    Zhou L, Xu S, Shan J, Liu Y, Wang P 2018 Mech. Mater. 123 1Google Scholar

    [22]

    Grady D 2017 Phys. Shock Impact (Vol. 1) (London: IOP Publishing) pp2-57–2-68

    [23]

    Mott N F 1947 Proc. R. Soc. London, Ser. A 189 300Google Scholar

    [24]

    Feng R 2000 J. Appl. Phys. 87 1693Google Scholar

    [25]

    刘占芳, 常敬臻, 姚国文, 张凯, 李建鹏 2006 力学学报 38 626Google Scholar

    Liu Z F, Chang J Z, Yao G W, Zhang K, Li J P 2006 Chin. J. Theor. Appl. Mech. 38 626Google Scholar

  • 图 1  试样规格 (a) 立方体试样; (b) 梯台试样; (c) 梯台试样简图

    Fig. 1.  Sample specifications: (a) Cube sample; (b) trapezoid sample; (c) diagram of the trapezoid sample.

    图 2  SHPB 实验装置

    Fig. 2.  Schematic diagram of the modified SHPB device.

    图 3  冲击过程中的载荷位移曲线和破碎过程 (a1) 透射杆为钢杆时立方体试样的力位移曲线; (a2) 冲击速度为7.8 m/s时立方体试样的破坏过程; (b1)透射杆为钢杆时梯台试样Ⅰ的力位移曲线; (b2) 梯台试样Ⅰ的破坏过程(冲击速度为12.38 m/s); (c1)透射杆为铝杆时梯台试样Ⅰ的力位移曲线; (c2) 透射杆为铝杆时梯台试样Ⅰ的破坏过程(冲击速度为15.45 m/s). 橙色箭头表示冲击方向

    Fig. 3.  Load displacement curve and crushing process during impact: (a1) Load displacement curve of cube sample under steel transmission bar; (a2) cube sample deformation process under impact velocity of 7.8 m/s; (b1) load displacement curve of trapezoid sample Ⅰ under steel transmission bar; (b2) trapezoid sample Ⅰ under steel transmission bar (impact velocity of 12.38 m/s); (c1) load displacement curve of trapezoid sample Ⅰ under aluminum transmission bar; (c2) trapezoid sample Ⅰ under aluminum transmission bar (impact velocity of 15.45 m/s). The orange arrow denotes the impact direction.

    图 4  梯台试样Ⅰ在钢杆下的应变分布 (冲击速度13.3 m/s) (a) DIC计算区域; (b) 高速摄影图片; (c) 2D等效剪应变场(箭头表示冲击方向)

    Fig. 4.  Strain distribution of trapezoid sample Ⅰ under steel transmission bar (impact velocity of 13.3 m/s): (a) Area of DIC calculation; (b) high speed images; (c) 2D equivalent shear strain field (The arrow denotes the impact direction).

    图 5  梯台Ⅰ试样在铝杆下的应变分布 (冲击速度16.21 m/s) (a) 高速摄影图片; (b) 2D等效剪应变场(箭头表示冲击方向)

    Fig. 5.  Strain distribution of trapezoid sample Ⅰ under aluminum transmission bar (impact velocity of 16.21 m/s): (a) High speed images; (b) 2D equivalent shear strain field. (The arrow denotes the impact direction.)

    图 6  沿冲击方向的平均等效剪应变分布 (a) 梯台试样Ⅰ在冲击速度为13.3 m/s、透射杆为钢杆时的应变分布; (b) 梯台试样Ⅰ在冲击速度为16.21 m/s、透射杆为铝杆时的应变分布

    Fig. 6.  Average equivalent shear strain distribution along impact direction: (a) Trapezoid sample Ⅰ under steel transmission bar (impact velocity of 13.3 m/s); (b) trapezoid sample Ⅰ under aluminum transmission bar (impact velocity of 16.21 m/s).

    图 7  不同时刻试样内的应力分布

    Fig. 7.  Stress distribution in sample at different time.

    图 8  破碎时试样内的广义扩散阻力分布

    Fig. 8.  Generalized diffusion resistance force distribution in the sample during breakage.

    表 1  试样两端应力差统计

    Table 1.  Statistics of stress differences between two ends of sample.

    试样透射杆应变率/s–1应力差异
    立方体钢杆600<2.5%
    梯台Ⅰ50020.4%—22.1%
    梯台Ⅱ60033.8%—35.2%
    梯台Ⅰ铝杆60023.3%—25.5%
    梯台Ⅱ75037.2%—43.1%
    下载: 导出CSV
    Baidu
  • [1]

    徐松林, 单俊芳, 王鹏飞 2020 现代应用物理 11 30101Google Scholar

    Xu S L, Shan J F, Wang P F 2020 Mod. Appl. Phys. 11 30101Google Scholar

    [2]

    马棋棋, 熊迅, 郑宇轩, 周风华 2019 高压 33 044101Google Scholar

    Ma Q Q, Xiong X, Zheng Y X, Zhou F H 2019 Chin. J. High Pressure Phys. 33 044101Google Scholar

    [3]

    Huang J, Xu S, Hu S 2013 Rock Mech. Rock Eng. 47 1727

    [4]

    陈兴, 马刚, 周伟, 赖国伟, 来志强 2018 67 146102Google Scholar

    Chen X, Ma G, Zhou W, Lai G W, Lai Z Q 2018 Acta Phys. Sin. 67 146102Google Scholar

    [5]

    Jiang H B, Xu S L, Shan J F, Wang D R, Liu Y G, Zhou L J, Wang P F 2019 Powder Technol. 353 359Google Scholar

    [6]

    Shan J, Xu S, Liu Y G, Zhou L J, Wang P F 2018 Powder Technol. 330 317Google Scholar

    [7]

    Potapov A V, Campbell C S 1997 Powder Technol. 93 13Google Scholar

    [8]

    Rasorenov S V, Kanel G I, Fortov V E, Abasehov M M 1991 Int. J. High Pressure Res. 6 225Google Scholar

    [9]

    Espinosa H D 1998 Mech. Mater. 29 219Google Scholar

    [10]

    冯晓伟, 李俊承, 王洪波, 常敬臻 2016 65 166201Google Scholar

    Feng X W, Li J C, Wang H B, Chang J Z 2016 Acta Phys. Sin. 65 166201Google Scholar

    [11]

    Anderson Jr C E, Bigger R P, Weiss C E 2014 Int. J. Appl. Glass Sci. 5 374Google Scholar

    [12]

    Huang J Y, Li Y, Liu Q C, Zhou X M, Liu L W, Liu C L, Zhu H M, Luo S N 2015 Phys. Rev. B 92 144101Google Scholar

    [13]

    Sheikh M Z, Atif M, Li Y L, Zhou F H, Raza M A, Dar U A, Gao G Z, Wang Y M 2021 Constr. Build. Mater. 288 123088Google Scholar

    [14]

    易洪昇, 徐松林, 单俊芳, 张鸣 2017 爆炸与冲击 37 913Google Scholar

    Yi H S, Xu S L, Shan J F, Zhang M 2017 Explosion and Shock Waves 37 913Google Scholar

    [15]

    宋一平, 苗春贺, 单俊芳, 王鹏飞, 徐松林 2022 爆炸与冲击 42 073103Google Scholar

    Song Y P, Miao C H, Shan J F, Wang P F, Xu S L 2022 Explosion and Shock Waves 42 073103Google Scholar

    [16]

    方继松, 王珠, 熊迅, 郑宇轩, 周凤华 2020 高压 34 014101Google Scholar

    Fang J S, Wang Z, Xiong X, Zheng Y X, Zhou F H 2020 Chin. J. High Pressure Phys. 34 014101Google Scholar

    [17]

    Miao C H, Xu S L, Song Y P, Xie Y S, Yuan L Z, Wang P F 2022 Powder Technol. 397 117081Google Scholar

    [18]

    Liu D, Shen L, Guillard F, Einav I 2016 Int. J. Impact Eng. 93 222Google Scholar

    [19]

    简世豪, 苗春贺, 张磊, 单俊芳, 王鹏飞, 徐松林 2021 高压 35 024202Google Scholar

    Jian S H, Miao C H, Zhang L, Shan J F, Wang P F, Xu S L 2021 Chin. J. High Pressure Phys. 35 024202Google Scholar

    [20]

    Xing H Z, Zhang Q B, Braithwaite C H, Pan B, Zhao J 2017 Rock Mech. Rock Eng. 50 1611Google Scholar

    [21]

    Zhou L, Xu S, Shan J, Liu Y, Wang P 2018 Mech. Mater. 123 1Google Scholar

    [22]

    Grady D 2017 Phys. Shock Impact (Vol. 1) (London: IOP Publishing) pp2-57–2-68

    [23]

    Mott N F 1947 Proc. R. Soc. London, Ser. A 189 300Google Scholar

    [24]

    Feng R 2000 J. Appl. Phys. 87 1693Google Scholar

    [25]

    刘占芳, 常敬臻, 姚国文, 张凯, 李建鹏 2006 力学学报 38 626Google Scholar

    Liu Z F, Chang J Z, Yao G W, Zhang K, Li J P 2006 Chin. J. Theor. Appl. Mech. 38 626Google Scholar

  • [1] 苗春贺, 袁良柱, 陆建华, 王鹏飞, 徐松林. PMMA的冲击破碎扩散特性研究.  , 2022, 0(0): . doi: 10.7498/aps.7120220740
    [2] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用.  , 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [3] 黄多辉, 万明杰, 杨俊升. 聚甲基丙烯酸甲酯与碳纳米管纳米复合材料玻璃化转变及其非线性力学行为的分子动力学模拟.  , 2021, 70(21): 218101. doi: 10.7498/aps.70.20210752
    [4] 种涛, 傅华, 李涛, 莫建军, 张旭平, 马骁, 郑贤旭. 一种同步研究透明材料折射率和动力学特性的实验方法.  , 2021, 70(17): 176201. doi: 10.7498/aps.70.20210414
    [5] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性.  , 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [6] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析.  , 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [7] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究.  , 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [8] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究.  , 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [9] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算.  , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [10] 容佳玲, 陈赟汉, 周洁, 张雪, 王立, 曹进. 基于ITO/聚甲基丙烯酸甲酯/Al的有机阻变存储器SPICE仿真.  , 2013, 62(22): 228502. doi: 10.7498/aps.62.228502
    [11] 蔡绍洪, 周业宏, 何建勇. 外场下丙烯酸甲酯的激发特性研究.  , 2011, 60(9): 093102. doi: 10.7498/aps.60.093102
    [12] 周学懋, 陈晓萌, 吴学邦, 水嘉鹏, 朱震刚. 聚甲基丙烯酸甲酯/镓纳米复合物的动力学弛豫行为.  , 2011, 60(3): 036102. doi: 10.7498/aps.60.036102
    [13] 李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛. 一种可控纳米柱阵列的研制.  , 2010, 59(8): 5851-5856. doi: 10.7498/aps.59.5851
    [14] 曹莉霞, 尚家香, 张跃. 应力诱发NiAl单晶马氏体相变的分子动力学模拟.  , 2009, 58(10): 7307-7312. doi: 10.7498/aps.58.7307
    [15] 樊荣伟, 夏元钦, 李晓晖, 姜玉刚, 陈德应. 宽带输出PM580掺杂聚甲基丙烯酸甲酯固体染料激光器研究.  , 2008, 57(9): 5705-5708. doi: 10.7498/aps.57.5705
    [16] 郑致刚, 马 骥, 宋 静, 刘永刚, 胡立发, 宣 丽. 基于丙烯酸酯的全息聚合物分散液晶光栅的动力学理论研究.  , 2007, 56(1): 15-24. doi: 10.7498/aps.56.15
    [17] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性.  , 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [18] 梁兆颜, 闫 石, 宣 丽, 马 凯, 黄锡珉, 谢景力, 张彦杰, 田颜清, 赵英英, 张金宝. 聚甲基丙烯酸肉桂酰氧基乙酯的光化学反应在液晶分子排列取向中的作用.  , 2000, 49(6): 1114-1119. doi: 10.7498/aps.49.1114
    [19] 林东, 王少阶. 用正电子湮没研究高聚物聚甲基丙烯酸甲脂的结构转变与自由体积特性.  , 1992, 41(4): 668-674. doi: 10.7498/aps.41.668
    [20] 张进修, 李江宏. NiTi合金中应力诱导的I/C相变及其界面动力学的研究.  , 1988, 37(3): 363-372. doi: 10.7498/aps.37.363
计量
  • 文章访问数:  3413
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-07-05
  • 上网日期:  2022-10-19
  • 刊出日期:  2022-11-05

/

返回文章
返回
Baidu
map