搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同方向石墨烯片构筑纳米孔隙浸润特征

王文远 谢章 郝少倩 吴锋民 寇建龙

引用本文:
Citation:

不同方向石墨烯片构筑纳米孔隙浸润特征

王文远, 谢章, 郝少倩, 吴锋民, 寇建龙

Infiltration characteristics of nanochannels composed of graphene sheets in different directions

Wang Wen-Yuan, Xie Zhang, Hao Shao-Qian, Wu Feng-Min, Kou Jian-Long
PDF
HTML
导出引用
  • 以石墨烯为基质构筑的纳米孔隙存在两种壁面结构, 水滴浸润纳米孔隙在微流动方面至关重要. 本文鉴于实验报道的石墨烯结构, 构建了两种石墨烯纳米孔隙, 利用全原子分子动力学模拟方法研究了纳米水滴浸润两种纳米孔隙. 发现两种不同排列石墨烯构筑相同尺度的纳米孔隙展现出完全不同的浸润特点, 一种是放置在纳米孔隙入口处的水滴会自发浸润孔隙, 另一种是水滴完全不会浸润孔隙. 通过分析两种纳米孔隙结构, 总结出了产生上述现象主要归因于纳米孔隙内外表面的润湿性差异. 建立了纳米孔隙内外表面完全一样的结构, 构建了水滴浸润纳米孔隙的润湿性相图, 给出了水滴浸润纳米孔隙的一般性规律.
    The infiltration of water droplets in nanochannels is of great importance in microfluidics. In this paper, two types of graphene nanochannels with different wall structures are constructed based on the experimentally reported graphene structure, and the infiltrations of water nanodroplet in the two nanochannels are investigated by performing all-atom molecular dynamics simulation. It is found that the two nanochannels with the same size, composed of different graphene arrays, exhibit completely different infiltration properties: water droplets cannot infiltrate into the multilayer stacked channels, but can wet the vertical array channels spontaneously and completely. By analyzing the structures of the two nanochannels, the novel phenomenon is mainly attributed to the difference in wettability between the inner surface and the outer surface of the nanochannel. From the perspective of energy, the potential energy of water droplets in the multilayer stacked channels is higher than that outside the channels, while the potential energy of water droplets in the vertical array channels is lower than that outside the channels. Therefore, water droplets can spontaneously infiltrate into the latter ones. The van der Waals interaction between the droplet and the channels and the Coulomb interaction inside the droplet play a dominant role in spontaneously infiltrating the water droplets, while the van der Waals interaction inside the droplet has little effect on the infiltration behavior. In addition, through a series of simulations of water droplets wetting the nanochannels with identical inner surface and outer surface, the wettability phase diagram of water droplets infiltration into nanochannels is established, which represents the general law of water droplet infiltration into nanochannels.
      通信作者: 寇建龙, kjl@zjnu.cn
    • 基金项目: 浙江省自然科学基金(批准号: LR21A020001)和国家自然科学基金(批准号: 12172334)和资助的课题.
      Corresponding author: Kou Jian-Long, kjl@zjnu.cn
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province (Grant No. LR21A020001) and the National Natural Science Foundation of China (Grant No. 12172334).
    [1]

    Kavokine N, Netz R R, Bocquet L 2021 Annu. Rev. Fluid Mech. 53 377Google Scholar

    [2]

    张烨, 张冉, 常青, 李桦 2019 68 20190248Google Scholar

    Zhang Y, Zhang R, Chang Q, Li H 2019 Acta Phys. Sin. 68 20190248Google Scholar

    [3]

    李文, 马骁婧, 徐进良, 王艳, 雷俊鹏 2021 70 126101Google Scholar

    Li W, Ma X J, Xu J L, Wang Y, Lei J P 2021 Acta Phys. Sin. 70 126101Google Scholar

    [4]

    Shen A, Liu Y, Ali S F 2020 Capillarity 3 1Google Scholar

    [5]

    Zhang J, Xie Z, Hao S Q, Li Z, Yao J, Kou J L 2022 Energy Fuels 36 1507Google Scholar

    [6]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [7]

    Balandin A A 2011 Nat. Mater. 10 569Google Scholar

    [8]

    Li X, Tao L, Chen Z F, Fang H, Li X S, Wang X R, Xu J B, Zhu H W 2017 Appl. Phys. Rev. 4 021306Google Scholar

    [9]

    Chen C X, Lin Y, Zhou W, Gong M, He Z Y, Shi F Y, Li X Y, Wu J Z, Lam K T, Wang J N 2021 Nat. Electron. 4 653Google Scholar

    [10]

    Stoller M D, Park S J, Zhu Y W, An J H, Ruoff R S 2008 Nano Lett. 8 3498Google Scholar

    [11]

    Hao S Q, Xie Z, Li Z, Kou J L, Wu F M 2021 Nanoscale 13 15963Google Scholar

    [12]

    Xie Q, Alibakhshi M A, Jiao S, Xu Z, Hempel M, Kong J, Park H G, Duan C 2018 Nat. Nanotechnol. 13 238Google Scholar

    [13]

    Su J Y, Zhao Y Z, Fang C 2018 Nanotechnology 29 225706Google Scholar

    [14]

    Chen L, Shi G S, Shen J, Peng B Q, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, Xu G, Liu G P, Zeng J R, Zhang L J, Yang Y Z, Zhou G Q, Wu M H, Jin W Q, Li J Y, Fang H P 2017 Nature 550 380Google Scholar

    [15]

    Jiang J, Yan L, Fang H P 2021 Chin. Phys. Lett. 38 106801Google Scholar

    [16]

    Qiu H, Zhou W Q, Guo W L 2021 ACS Nano 15 18848Google Scholar

    [17]

    Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat. Nanotechnol. 6 162Google Scholar

    [18]

    Jin Y, Tao R, Li Z 2019 Electrophoresis 40 859Google Scholar

    [19]

    Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V 2015 Nature 519 443Google Scholar

    [20]

    王奉超, 朱银波, 吴恒安 2018 中国科学: 物理学 力学 天文学 48 094609Google Scholar

    Wang F C, Zhu Y B, Wu H A 2018 Sci. Sin. Phys. Mech. Astron. 48 094609Google Scholar

    [21]

    Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J I, Lee C H, Park H G 2014 Science 344 289Google Scholar

    [22]

    Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-Hidalgo M, Garaj S, Haigh S J, Grigorieva I V, Wu H A, Geim A K 2016 Nature 538 222Google Scholar

    [23]

    Katagiri G, Ishida H, Ishitani A 1988 Carbon 26 565Google Scholar

    [24]

    Choi G B, Hong S, Wee J H, Kim D W, Seo T H, Nomura K, Nishihara H, Kim Y A 2020 Nano Lett. 20 5885Google Scholar

    [25]

    Wei Y, Jia C Q 2015 Carbon 87 10Google Scholar

    [26]

    Włoch J, Terzyk A P, Kowalczyk P, Korczeniewski E D, Kaneko K 2017 Carbon 115 571Google Scholar

    [27]

    Fujiwara K, Shibahara M 2013 Nanoscale Microscale Thermophys. Eng. 17 1Google Scholar

    [28]

    Fujiwara K, Shibahara M 2015 J. Nanosci. Nanotechnol. 15 3143Google Scholar

    [29]

    Wang S R, Zhang Y, Abidi N, Cabrales L 2009 Langmuir 25 11078Google Scholar

    [30]

    Li G Z, Wang S S, Zeng J, Yu J 2021 Carbon 171 111Google Scholar

    [31]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [32]

    Hess B, Kutzner C, Van D S D, Lindahl E 2008 J. Chem. Theory Comput. 4 435Google Scholar

    [33]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101Google Scholar

    [34]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269Google Scholar

    [35]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2003 J. Phys. Chem. B 107 1345Google Scholar

    [36]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [37]

    Kaminski G A, Friesner R A, Tirado-Rives J, Jorgensen W L 2001 J. Phys. Chem. B 105 6474Google Scholar

    [38]

    Kou J L, Zhou X Y, Lu H J, Xu Y S, Wu F M, Fan J T 2012 Soft Matter 8 12111Google Scholar

    [39]

    Fan C F, Caǧin T 1995 J. Chem. Phys. 103 9053Google Scholar

    [40]

    Lee J H, Kim C, Tokman M, Colvin M E 2021 J. Phys. Chem. C 125 6933Google Scholar

    [41]

    Kou J L, Lu H J, Wu F M, Fan J T 2011 Europhys. Lett. 96 56008Google Scholar

    [42]

    Liu Q C, Xu B X 2015 Langmuir 31 9070Google Scholar

    [43]

    Zangi R, Zhou R, Berne B J 2009 J. Am. Chem. Soc. 131 1535Google Scholar

    [44]

    Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng X C 2009 Proc. Natl. Acad. Sci. U.S.A. 106 8435Google Scholar

    [45]

    Koishi T, Yasuoka K, Fujikawa S, Zeng X C 2011 ACS Nano 5 6834Google Scholar

    [46]

    Zhu C Q, Gao, Y R, Huang Y Y, Li H, Meng S, Francisco J S, Zeng X C 2017 Nanoscale 9 18240Google Scholar

    [47]

    Khan S, Singh J K 2014 Mol. Simul. 40 458Google Scholar

  • 图 1  两种石墨烯构筑的纳米孔隙 (a)(b) 分别为ESC和BPC模型的初始模拟系统, 插图为ESC模型的局部放大图

    Fig. 1.  Two kinds of graphene nanochannels: Initial simulation systems of the ESC model (a) and BPC model (b), respectively. The inset shows the partial enlargement of structure.

    图 2  计算水滴在界面上接触角示意图

    Fig. 2.  Schematic diagram of calculating contact angle of droplet on the surface.

    图 3  (a) ESC(红色)和BPC(蓝色)孔隙内水分子数目随时间的变化趋势, 插图Ⅰ和Ⅱ分别为ESC和BPC模型最终浸润状态的模拟快照; (b) 不同尺寸水滴浸润ESC和BPC模型的最终浸润状态

    Fig. 3.  (a) Evolution of the number of water molecules in the nanochannel of ESC (red) and BPC (blue) with time, insets I, II are the simulation snapshots of the final infiltration states with ESC model and BPC model, respectively; (b) final infiltration states of ESC and BPC models with different sizes of water droplets.

    图 4  (a) 石墨烯基面(蓝色)和边缘面(红色)的面密度大小, L为垂直于该面统计的厚度; (b) 水滴在层叠基底和阵列基底上的接触角轮廓图

    Fig. 4.  (a) Area density of graphene basal plane (blue) and edge surface (red), L is the statistical thickness perpendicular to the surface; (b) contact angles profiles of water droplets on the laminated substrate and the array substrate, respectively.

    图 5  水滴浸润ESC纳米孔隙(红色)和BPC纳米孔隙(蓝色)过程中水滴的势能

    Fig. 5.  Potential energy of water droplet infiltration nanochannel of ESC (red) and BPC (blue), respectively.

    图 6  两种系统水滴浸润孔隙过程能量变化 (a) 水与孔隙之间的范德瓦耳斯作用 (EVdW(SOL-C)); (b) 水与水之间范德瓦耳斯作用 (EVdW(SOL-SOL)); (c) 水与水之间的库伦作用 (ECoul(SOL-SOL)); (d) 水与孔隙之间的范德瓦耳斯作用和水与水之间的库伦作用之和

    Fig. 6.  Energy evolution in the process of water droplets infiltrating nanochannel in two systems: (a) Van der Waals interaction between water and nanochannel, EVdW(SOL-C); (b) Van der Waals interaction between water and water, EVdW(SOL-SOL); (c) Coulomb interaction between water and water, ECoul(SOL-SOL); (d) sum of Van der Waals interaction between water and nanochannel and Coulomb interaction between water and water.

    图 7  (a) 表面调节因子λ与表面接触角的函数关系, 插图为纳米孔隙的初始构型(不含水滴); (b) 浸润相图, 即纳米孔隙界面调节因子λA与壁面调节因子λB对水滴浸润纳米孔隙的影响, 插图Ⅰ和Ⅱ分别代表该区域的最终浸润状态

    Fig. 7.  (a) Surface tuning factor λ as a function of the intrinsic contact angle of the surface, the inset shows the initial configuration of the nanochannel (without water droplets); (b) the wetting phase diagram, the effect of interfacial tuning factor λA and wall tuning factor λB on the infiltration of water droplets into the nanochannel, insets I and II represent the final infiltration state of the region, respectively.

    图 A1  不同孔隙宽度和深度下水滴的浸润状态 (a) 宽度影响 (b) 深度影响

    Fig. A1.  Infiltration characteristics of nanochannels in different widths (a) and depths (b), respectively.

    Baidu
  • [1]

    Kavokine N, Netz R R, Bocquet L 2021 Annu. Rev. Fluid Mech. 53 377Google Scholar

    [2]

    张烨, 张冉, 常青, 李桦 2019 68 20190248Google Scholar

    Zhang Y, Zhang R, Chang Q, Li H 2019 Acta Phys. Sin. 68 20190248Google Scholar

    [3]

    李文, 马骁婧, 徐进良, 王艳, 雷俊鹏 2021 70 126101Google Scholar

    Li W, Ma X J, Xu J L, Wang Y, Lei J P 2021 Acta Phys. Sin. 70 126101Google Scholar

    [4]

    Shen A, Liu Y, Ali S F 2020 Capillarity 3 1Google Scholar

    [5]

    Zhang J, Xie Z, Hao S Q, Li Z, Yao J, Kou J L 2022 Energy Fuels 36 1507Google Scholar

    [6]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [7]

    Balandin A A 2011 Nat. Mater. 10 569Google Scholar

    [8]

    Li X, Tao L, Chen Z F, Fang H, Li X S, Wang X R, Xu J B, Zhu H W 2017 Appl. Phys. Rev. 4 021306Google Scholar

    [9]

    Chen C X, Lin Y, Zhou W, Gong M, He Z Y, Shi F Y, Li X Y, Wu J Z, Lam K T, Wang J N 2021 Nat. Electron. 4 653Google Scholar

    [10]

    Stoller M D, Park S J, Zhu Y W, An J H, Ruoff R S 2008 Nano Lett. 8 3498Google Scholar

    [11]

    Hao S Q, Xie Z, Li Z, Kou J L, Wu F M 2021 Nanoscale 13 15963Google Scholar

    [12]

    Xie Q, Alibakhshi M A, Jiao S, Xu Z, Hempel M, Kong J, Park H G, Duan C 2018 Nat. Nanotechnol. 13 238Google Scholar

    [13]

    Su J Y, Zhao Y Z, Fang C 2018 Nanotechnology 29 225706Google Scholar

    [14]

    Chen L, Shi G S, Shen J, Peng B Q, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, Xu G, Liu G P, Zeng J R, Zhang L J, Yang Y Z, Zhou G Q, Wu M H, Jin W Q, Li J Y, Fang H P 2017 Nature 550 380Google Scholar

    [15]

    Jiang J, Yan L, Fang H P 2021 Chin. Phys. Lett. 38 106801Google Scholar

    [16]

    Qiu H, Zhou W Q, Guo W L 2021 ACS Nano 15 18848Google Scholar

    [17]

    Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat. Nanotechnol. 6 162Google Scholar

    [18]

    Jin Y, Tao R, Li Z 2019 Electrophoresis 40 859Google Scholar

    [19]

    Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V 2015 Nature 519 443Google Scholar

    [20]

    王奉超, 朱银波, 吴恒安 2018 中国科学: 物理学 力学 天文学 48 094609Google Scholar

    Wang F C, Zhu Y B, Wu H A 2018 Sci. Sin. Phys. Mech. Astron. 48 094609Google Scholar

    [21]

    Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J I, Lee C H, Park H G 2014 Science 344 289Google Scholar

    [22]

    Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-Hidalgo M, Garaj S, Haigh S J, Grigorieva I V, Wu H A, Geim A K 2016 Nature 538 222Google Scholar

    [23]

    Katagiri G, Ishida H, Ishitani A 1988 Carbon 26 565Google Scholar

    [24]

    Choi G B, Hong S, Wee J H, Kim D W, Seo T H, Nomura K, Nishihara H, Kim Y A 2020 Nano Lett. 20 5885Google Scholar

    [25]

    Wei Y, Jia C Q 2015 Carbon 87 10Google Scholar

    [26]

    Włoch J, Terzyk A P, Kowalczyk P, Korczeniewski E D, Kaneko K 2017 Carbon 115 571Google Scholar

    [27]

    Fujiwara K, Shibahara M 2013 Nanoscale Microscale Thermophys. Eng. 17 1Google Scholar

    [28]

    Fujiwara K, Shibahara M 2015 J. Nanosci. Nanotechnol. 15 3143Google Scholar

    [29]

    Wang S R, Zhang Y, Abidi N, Cabrales L 2009 Langmuir 25 11078Google Scholar

    [30]

    Li G Z, Wang S S, Zeng J, Yu J 2021 Carbon 171 111Google Scholar

    [31]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [32]

    Hess B, Kutzner C, Van D S D, Lindahl E 2008 J. Chem. Theory Comput. 4 435Google Scholar

    [33]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101Google Scholar

    [34]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269Google Scholar

    [35]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2003 J. Phys. Chem. B 107 1345Google Scholar

    [36]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [37]

    Kaminski G A, Friesner R A, Tirado-Rives J, Jorgensen W L 2001 J. Phys. Chem. B 105 6474Google Scholar

    [38]

    Kou J L, Zhou X Y, Lu H J, Xu Y S, Wu F M, Fan J T 2012 Soft Matter 8 12111Google Scholar

    [39]

    Fan C F, Caǧin T 1995 J. Chem. Phys. 103 9053Google Scholar

    [40]

    Lee J H, Kim C, Tokman M, Colvin M E 2021 J. Phys. Chem. C 125 6933Google Scholar

    [41]

    Kou J L, Lu H J, Wu F M, Fan J T 2011 Europhys. Lett. 96 56008Google Scholar

    [42]

    Liu Q C, Xu B X 2015 Langmuir 31 9070Google Scholar

    [43]

    Zangi R, Zhou R, Berne B J 2009 J. Am. Chem. Soc. 131 1535Google Scholar

    [44]

    Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng X C 2009 Proc. Natl. Acad. Sci. U.S.A. 106 8435Google Scholar

    [45]

    Koishi T, Yasuoka K, Fujikawa S, Zeng X C 2011 ACS Nano 5 6834Google Scholar

    [46]

    Zhu C Q, Gao, Y R, Huang Y Y, Li H, Meng S, Francisco J S, Zeng X C 2017 Nanoscale 9 18240Google Scholar

    [47]

    Khan S, Singh J K 2014 Mol. Simul. 40 458Google Scholar

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究.  , 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] 胡剑, 张森, 娄钦. 电场和加热器特性对饱和池沸腾传热影响的介观数值方法研究.  , 2023, 72(17): 176401. doi: 10.7498/aps.72.20230341
    [3] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性.  , 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [4] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响.  , 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [5] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征.  , 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [6] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究.  , 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [7] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响.  , 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [8] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性.  , 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [9] 熊其玉, 董磊, 焦云龙, 刘小君, 刘焜. 应用激光蚀刻不同微织构表面的润湿性.  , 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [10] 张凯, 陆勇俊, 王峰会. 表面能梯度驱动下纳米水滴在不同微结构表面上的运动.  , 2015, 64(6): 064703. doi: 10.7498/aps.64.064703
    [11] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究.  , 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [12] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性.  , 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [13] 姚祎, 周哲玮, 胡国辉. 有结构壁面上液滴运动特征的耗散粒子动力学模拟.  , 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [14] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究.  , 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [15] 赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英. 液态Sn-Cu钎料的黏滞性与润湿行为研究.  , 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [16] 王建军, 王飞, 原鹏飞, 孙强, 贾瑜. 石墨烯层间纳米摩擦性质的第一性原理研究.  , 2012, 61(10): 106801. doi: 10.7498/aps.61.106801
    [17] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟.  , 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究.  , 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [19] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究.  , 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [20] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响.  , 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
计量
  • 文章访问数:  3842
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-13
  • 修回日期:  2022-05-18
  • 上网日期:  2022-09-28
  • 刊出日期:  2022-10-05

/

返回文章
返回
Baidu
map