搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向工业园区的多组分痕量气体光声光谱同时检测

刘丽娴 陈柏松 张乐 章学仕 宦惠庭 尹旭坤 邵晓鹏 马欲飞 MandelisAndreas

引用本文:
Citation:

面向工业园区的多组分痕量气体光声光谱同时检测

刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas

Photoacoustic simultaneous detection of multiple trace gases for industrial park application

Liu Li-Xian, Chen Bai-Song, Zhang Le, Zhang Xue-Shi, Huan Hui-Ting, Yin Xu-Kun, Shao Xiao-Peng, Ma Yu-Fei, Mandelis Andreas
PDF
HTML
导出引用
  • 工业园区有毒有害气体排放具有种类繁多、成分复杂、分布广泛等特点, 建立多组分、高精度气体监测技术体系是污染防控的基础. 黑体光谱辐射范围广, 可有效地降低吸收谱线相互干扰可能性, 是多组分气体同时检测的首选光源. 但其单波长能量低且稳定性欠佳导致难以实现高精度气体探测. 鉴于此, 本文提出光学增程和声学谐振双重增强模式联用, 设计了一种可用于多组分气体同时高精度检测光声光谱传感器. 应用两个相同T型增强光声池, 构建了双光路增强型差分光学/光声检测模式, 实验证明了差分光声模式具有更强的噪声抑制能力, 可于同波段强吸收背景下提取出微弱痕量目标气体吸收信息, 且双光路增强型信号较单光路模式提高了1.91倍. 进行多组分气体同时检测性能研究, 常温常压下CO2, C2H2和NH3检测精度的体积分数分别为7.25 × 10–7, 1.84 × 10–6和1.43 × 10–6, 比单光路光声模式提高了1个数量级. 对体积分数为0—3 × 10–3 的三种气体样品进行测试, 光声信号线性度高于0.995. 广谱双光路T型增强差分光声光谱技术补偿了黑体广谱检测方法灵敏度低的缺陷, 具有灵敏度高、选择性好、背景噪声抑制能力强的优势, 可为建立工业园区多组分毒害气体的高精度监测技术提供支持, 助力于我国“碳中和碳达峰”宏伟任务.
    The determination of toxic or harmful gases in industrial parks is a challenge to monitoring exhaust contaminants due to the features of complex compositions and ubiquity. Blackbody sources play an important role in simultaneously detecting the multiple gas species in the presence of cross-interfering absorption lines due to their effective ultra-wide wavelength range. Nevertheless, the problem of lower intensity per wavelength and less stability persists as an obstacle for highly sensitive trace gas detection. In this study, a dual optical path (DOP) enhanced differential photoacoustic and spectral detection mode is developed for simultaneously detecting the multiple toxic or harmful gas through augmenting the weak effective absorption signals and suppressing the spurious coherent background noise. Two identical T-type photoacoustic resonators are introduced to enable the differential mode. Neverthelss, the pure optical approach cannot distinguish the absorption characteristics of acetylene (C2H2) with volume fraction 5 × 10–5 even with the DOP enhancement, whereas emerging peaks in the differential photoacoustic (PA) mode reveal the capability of PA spectroscopy to suppress coherent noise. The results demonstrate that the differential PA signal is improved by 1.91 times that obtained by the DOP design. Methane (NH3), acetylene (C2H2) and carbon dioxide (CO2) are used to verify the performance of this DOP enhanced differential PA gas sensor, and the volume fraction of the sensitivity is found to be 7.25 × 10–7 for CO2, 1.84 × 10–6 for C2H2, and 1.43 × 10–6 for NH3 at standard temperature and pressure, which is an order of magnitude higher than the original single mode PA value. Linear PA amplitude responses ranging from 0 to 3 × 10–3 in volume fraction with respect to the three target gases are observed, and the correction coefficients are all greater than 0.995. The DOP enhanced differential PA detection mode compensates for the weakness of the limited sensitivity associated with broadband spectroscopic methods based on blackbody radiator. Thus, the broadband DOP enhanced differential photoacoustic modality is demonstrated to be an effective approach to simultaneous, highly sensitive and selective detection of multiple trace gases.
      通信作者: 陈柏松, chenbaisong@xidian.edu.cn ; 宦惠庭, hthuan@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62175194, 61805187, 61801358)资助的课题.
      Corresponding author: Chen Bai-Song, chenbaisong@xidian.edu.cn ; Huan Hui-Ting, hthuan@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62175194, 61805187, 61801358).
    [1]

    Hyde B P, Carton O T, Toole P O 2003 Atmos. Environ. 37 55Google Scholar

    [2]

    Gong Z F, Gao T L, Mei L, Chen K, Zhang B, Peng W, Yu Q X 2021 Photoacoustics 21 100216Google Scholar

    [3]

    Li Y, Wang R Z, Tittel F K, Ma Y F 2020 Opt. Laser Eng. 132 106155Google Scholar

    [4]

    Wilson A D 2012 Procedia 1 453

    [5]

    Marriott P J, Haglund P, Ong R C Y 2003 Clin. Chim. Acta 328 1Google Scholar

    [6]

    Berbegal C, Khomenko I, Russo P, Spano G, Fragasso M, Biasioli F, Capozzi V 2020 Fermentation 6 55Google Scholar

    [7]

    Korablev O, Vandaele A C, Montmessin F, et al. 2019 Nature 568 517Google Scholar

    [8]

    Tombez L, Zhang E J, Orcutt J S, Kamlapurkar S, Green W M J 2017 Optica 4 1322Google Scholar

    [9]

    孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺 2012 61 140704Google Scholar

    Sun Y W, Liu W Q, Wang S M, Huang S H, Zeng Y, Xie P H, Chen J, Wang Y P, Si F Q 2012 Acta Phys. Sin. 61 140704Google Scholar

    [10]

    苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律 2017 66 074212Google Scholar

    Miao Y P, Le W, Yang F, Lin Y C, Tan Y Z, He H L 2017 Acta Phys. Sin. 66 074212Google Scholar

    [11]

    董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 61 060702Google Scholar

    Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta Phys. Sin. 61 060702Google Scholar

    [12]

    尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏 2021 70 170701

    Yin X K, Dong L, Wu H P, Liu L X, Shao X P 2021 Acta Phys. Sin. 70 170701

    [13]

    马欲飞 2021 70 160702Google Scholar

    Ma Y F 2021 Acta Phys. Sin. 70 160702Google Scholar

    [14]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Lett. 44 1904Google Scholar

    [15]

    Li S Z, Wu H P, C R Y, Sampaolo A, Patimisco P, Spagnolo V, Tittel F K, Dong L 2019 Opt. Express 27 35267Google Scholar

    [16]

    Zhang B, Chen K, Chen Y W, et al. 2020 Opt. Express 28 6618Google Scholar

    [17]

    Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuators, B 251 632Google Scholar

    [18]

    Yin X K, Wu H P, Dong L, et al. 2019 Sens. Actuators, B 282 567Google Scholar

    [19]

    Liu L X, Mandelis A, Huan H T, Michaelian K H 2017 Opt. Lett. 42 1424Google Scholar

    [20]

    Liu L X, Mandelis A, Huan H T, Melnikov A 2016 Appl. Phys. B 122 268

    [21]

    Liu L X, Huan H T, Li W, Mandelis A, Wang Y F, Zhang L, Zhang X S, Yin X K, Wu Y X, Xiao X P 2021 Photoacoustics 21 100228Google Scholar

    [22]

    Liu L X, Huan H T, Mandelis A, Zhang L, Guo C F, Li W, Zhang X S, Yin X K, Shao X P, Wang D T, 2022 Opt. Laser Technol. 148 107695Google Scholar

  • 图 1  目标气体吸收谱线和碳棒光源能量分布

    Fig. 1.  Absorption spectra of target gases and wavenumber distribution of globar source.

    图 2  目标气体与H2O吸收线位置对比

    Fig. 2.  Absorption lines of target gases and water vapor.

    图 3  DOP差分光声光谱痕量气体传感器

    Fig. 3.  DOP enhanced photoacoustic gas sensor based on differential detection mode.

    图 4  T型增强光声池 (a) 光声池模型及气路连接; (b) 光声池幅值信号频率响应; (c) 气体光声信号气压响应

    Fig. 4.  T typed photoacouotic resonator: (a) T resonator model and gas diagram; (b) photoacoutic amplitude v.s.frequency; (c) photoacoustic signal of T cell v.s. pressure.

    图 5  DOP增强光谱和光声幅值信号

    Fig. 5.  DOP enhanced photoacoustic and optical spectra.

    图 6  体积分数为5 × 10–5的 C2H2 DOP增强模式光谱和光声谱线

    Fig. 6.  DOP enhanced photoacoustic and optical spectra of C2H2 with volume fraction of 5 × 10–5.

    图 7  C2H2气体DOP增强差分光声信号浓度响应分析

    Fig. 7.  DOP enhanced differential Photoacoustic signal v.s. C2H2 concentration.

    图 8  三种目标气体光声幅值响应线性度

    Fig. 8.  Photoacoustic signal linear fits of three target gases at designated absorption lines.

    Baidu
  • [1]

    Hyde B P, Carton O T, Toole P O 2003 Atmos. Environ. 37 55Google Scholar

    [2]

    Gong Z F, Gao T L, Mei L, Chen K, Zhang B, Peng W, Yu Q X 2021 Photoacoustics 21 100216Google Scholar

    [3]

    Li Y, Wang R Z, Tittel F K, Ma Y F 2020 Opt. Laser Eng. 132 106155Google Scholar

    [4]

    Wilson A D 2012 Procedia 1 453

    [5]

    Marriott P J, Haglund P, Ong R C Y 2003 Clin. Chim. Acta 328 1Google Scholar

    [6]

    Berbegal C, Khomenko I, Russo P, Spano G, Fragasso M, Biasioli F, Capozzi V 2020 Fermentation 6 55Google Scholar

    [7]

    Korablev O, Vandaele A C, Montmessin F, et al. 2019 Nature 568 517Google Scholar

    [8]

    Tombez L, Zhang E J, Orcutt J S, Kamlapurkar S, Green W M J 2017 Optica 4 1322Google Scholar

    [9]

    孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺 2012 61 140704Google Scholar

    Sun Y W, Liu W Q, Wang S M, Huang S H, Zeng Y, Xie P H, Chen J, Wang Y P, Si F Q 2012 Acta Phys. Sin. 61 140704Google Scholar

    [10]

    苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律 2017 66 074212Google Scholar

    Miao Y P, Le W, Yang F, Lin Y C, Tan Y Z, He H L 2017 Acta Phys. Sin. 66 074212Google Scholar

    [11]

    董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 61 060702Google Scholar

    Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta Phys. Sin. 61 060702Google Scholar

    [12]

    尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏 2021 70 170701

    Yin X K, Dong L, Wu H P, Liu L X, Shao X P 2021 Acta Phys. Sin. 70 170701

    [13]

    马欲飞 2021 70 160702Google Scholar

    Ma Y F 2021 Acta Phys. Sin. 70 160702Google Scholar

    [14]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Lett. 44 1904Google Scholar

    [15]

    Li S Z, Wu H P, C R Y, Sampaolo A, Patimisco P, Spagnolo V, Tittel F K, Dong L 2019 Opt. Express 27 35267Google Scholar

    [16]

    Zhang B, Chen K, Chen Y W, et al. 2020 Opt. Express 28 6618Google Scholar

    [17]

    Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuators, B 251 632Google Scholar

    [18]

    Yin X K, Wu H P, Dong L, et al. 2019 Sens. Actuators, B 282 567Google Scholar

    [19]

    Liu L X, Mandelis A, Huan H T, Michaelian K H 2017 Opt. Lett. 42 1424Google Scholar

    [20]

    Liu L X, Mandelis A, Huan H T, Melnikov A 2016 Appl. Phys. B 122 268

    [21]

    Liu L X, Huan H T, Li W, Mandelis A, Wang Y F, Zhang L, Zhang X S, Yin X K, Wu Y X, Xiao X P 2021 Photoacoustics 21 100228Google Scholar

    [22]

    Liu L X, Huan H T, Mandelis A, Zhang L, Guo C F, Li W, Zhang X S, Yin X K, Shao X P, Wang D T, 2022 Opt. Laser Technol. 148 107695Google Scholar

  • [1] 王雪冰, 唐春梅, 谢梓涵, 俞瑞, 严杰, 蒋承乐. Mo掺杂二维VS2吸附有毒气体的理论研究.  , 2024, 73(1): 013101. doi: 10.7498/aps.73.20231236
    [2] 王钰豪, 刘建国, 徐亮, 成潇潇, 邓亚颂, 沈先春, 孙永丰, 徐寒杨. 傅里叶红外光谱气体检测限的定性分析.  , 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [3] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展.  , 2021, 70(16): 160702. doi: 10.7498/aps.70.20210685
    [4] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏. 面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化.  , 2021, 70(17): 170701. doi: 10.7498/aps.70.20210532
    [5] 靳华伟, 胡仁志, 谢品华, 陈浩, 李治艳, 王凤阳, 王怡慧, 林川. 适用于ppb量级NO2检测的低功率蓝光二极管光声技术研究.  , 2019, 68(7): 070703. doi: 10.7498/aps.68.20182262
    [6] 程刚, 曹渊, 刘锟, 曹亚南, 陈家金, 高晓明. 光声光谱检测装置中光声池的数值计算及优化.  , 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [7] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量.  , 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [8] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体.  , 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [9] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展.  , 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [10] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性.  , 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [11] 张锐, 赵学玒, 赵迎, 王喆, 汪曣. 激光器特性在痕量气体检测中的影响.  , 2014, 63(14): 140701. doi: 10.7498/aps.63.140701
    [12] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱.  , 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [13] 余荣, 江月松, 余兰, 欧军. 利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征.  , 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [14] 许雪梅, 戴鹏, 杨兵初, 尹林子, 曹建, 丁一鹏, 曹粲. 光声池中微弱光声信号检测.  , 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [15] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲. 基于光声光谱技术的NO,NO2气体分析仪研究.  , 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [16] 孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺. 单组分双分析通道红外气体检测方法研究.  , 2012, 61(14): 140704. doi: 10.7498/aps.61.140704
    [17] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究.  , 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [18] 袁长迎, 炎正馨, 蒙瑰, 李智慧, 尚丽平. 高浓度气体共振光声光谱信号饱和特性研究.  , 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
    [19] 李宜德, 杜英磊, 李纪焕, 吴柏枚. 光声谱研究多孔碳化硅的能带特性.  , 2003, 52(5): 1260-1263. doi: 10.7498/aps.52.1260
    [20] 周岚, 张淑仪, 傅少伟, 王志, 张立德. 纳米SrTiO3的光声光谱研究.  , 1997, 46(5): 994-1000. doi: 10.7498/aps.46.994
计量
  • 文章访问数:  4670
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-05-02
  • 上网日期:  2022-08-26
  • 刊出日期:  2022-09-05

/

返回文章
返回
Baidu
map