-
利用传输矩阵法, 计算研究了一维反转对称光子结构通过不同的组合方式产生界面态的可调控特性, 并通过电子束蒸镀技术制备样品进行了实验验证. 由两种材料构成的反转对称层状光子结构, 根据元胞的反转对称中心不同分别对应PCI和PCII两种结构. 研究结果表明, 对于由PCI和PCII构成的组合结构, 在满足两个结构的表面阻抗虚部之和等于零的特征频率处存在一个界面态, 该界面态频率与结构元胞数无关; 若在此基础上再增加一个PCI, 构成PCI + PCII + PCI组合结构, 则在同一个带隙中会产生两个界面态; 改变组合结构中每部分或者其中一部分结构的元胞数可以对两个界面态频率实现调控, 实验研究结果充分表明调控的可行性, 这为设计满足不同应用需求的窄带滤波器、多通道滤波器等提供了更灵活的思路.Using the transfer matrix method, the tunable characteristics of the interface state generated by one-dimensional photonic structure with inversion symmetry are studied, and the samples are prepared by electron beam evaporation technology for experimental verification. According to the different inversion symmetry centers of unit cell, the inverted symmetric layered photonic structures are divided into two types i.e. PCI and PCII. The calculation results show that for the combined structure composed of PCI and PCII, there is an interface state at a characteristic frequency where the sum of the imaginary parts of the surface impedance of PCI and PCII is equal to zero, and this frequency of the interface state is independent of the number of unit cells. On this basis, if a PCI structure is added to form PCI + PCII + PCI photonic structure, two interface states will be generated in the same band gap, and changing the unit cell number in each or part of of individual PCI and PCII structures, the frequencies of two interface states can be regulated. The experimental results show that the regulation of interface state by controlling unit cell number is feasible, which provides a more flexible idea for designing the extremely narrow-band filters and multi-channel filters to meet different application requirements.
-
Keywords:
- photonic bandgap material /
- transfer matrix /
- electron beam evaporation technology /
- filter /
- interface state
[1] 段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英 2019 68 144201Google Scholar
Duan X K, Ren J J, Hao H, Zhang Q, Gong Q H, Gu Y 2019 Acta Phys. Sin. 68 144201Google Scholar
[2] 李林, 程亚, 祝世宁 2021 物理 50 308Google Scholar
Li L, Cheng Y, Zhu S N 2021 Physics 50 308Google Scholar
[3] Zhang Y B, Liu H, Cheng H, Tian J G, Chen S Q 2020 Opto-Electron. Adv. 3 200002Google Scholar
[4] 朱韵至 2020 博士学位论文 (南京: 南京大学)
Zhu Y Z 2020 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)
[5] Deng Z L, Tu Q A, Wang Y J, Wang Z Q, Shi T, Feng Z W, Qiao X C, Wang G P, Xiao S M, Li X P 2021 Adv. Mater. 33 2103472Google Scholar
[6] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar
[7] John S 1987 Phys. Rev. Lett. 58 2486Google Scholar
[8] 顾国昌, 李宏强, 陈洪涛, 陈鸿, 吴翔 2000 光学学报 20 728
Gu G C, Li H Q, Chen H T, Chen H, Wu X 2000 Acta Opt. Sin. 20 728
[9] 杜桂强, 刘念华 2004 53 1095Google Scholar
Du G Q, Liu N H 2004 Acta Phys. Sin. 53 1095Google Scholar
[10] Biswal A, Kumar R, Nayak C, Dhanalakshmi S 2021 Optik 234 166597Google Scholar
[11] Liu X J, Ren M L, Pan Q, Zhang X R, Ma J, Wu X Y 2020 Physica E 126 114415Google Scholar
[12] Taya S A, Doghmosh N, Upadhyay A 2021 Opt. Quantum Electron. 53 35Google Scholar
[13] 张正仁, 隆正文, 袁玉群, 刁心峰 2010 59 587Google Scholar
Zhang Z R, Long Z W, Yuan Y Q, Diao X F 2010 Acta Phys. Sin. 59 587Google Scholar
[14] Xu X F, Huang J Y, Zhang H, Guo X Y, Mu S S, Liu Y Q, Zhai N 2021 Opt. Commun. 498 127262Google Scholar
[15] Tan H Y, Zhou M J, Zhuge L J, Wu X M 2021 J. Phys. D: Appl. Phys. 54 085106Google Scholar
[16] Kalozoumis P A, Theocharis G, Achilleos V, Félix S, Richoux O, Pagneux V 2018 Phys. Rev. A 98 023838Google Scholar
[17] Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017Google Scholar
[18] 高慧芬, 周小芳, 黄学勤 2022 71 044301Google Scholar
Gao H F, Zhou X F, Huang X Q 2022 Acta Phys. Sin. 71 044301Google Scholar
[19] Liu Q, Sun J D, Sun Y D, Ren Z H, Liu C, Lv J W, Wang F M, Wang L Y, Liu W, Sun T, Chu P K 2020 Opt. Mater. 102 109800Google Scholar
[20] Feng S, Ren C, Wang W Z, Wang Y Q 2013 Opt. Commun. 289 144Google Scholar
[21] 刘博文, 胡明列, 宋有建, 柴路, 王清月 2008 中国激光 03 479Google Scholar
Liu B W, Hu M L, Song Y J, Chai L, Wang Q Y 2008 Chin. J. Lasers 03 479Google Scholar
[22] Zaghdoudi J, Kanzari M 2018 Optik 160 189Google Scholar
[23] Elshahat S, Abood I, Esmail M S M, Ouyang Z B, Lu C C 2021 Nanomaterials-Basel 11 194Google Scholar
[24] 高冬 2019 硕士学位论文 (青岛: 青岛科技大学)
Gao D 2019 M. S. Thesis (Qingdao: Qingdao University of science and technology) (in Chinese)
[25] 毛维涛, 李杨, 赵秋玲, 滕利华, 王霞 2020 中国激光 47 292
Mao W T, Li Y, Zhao Q L, Teng L H, Wang X 2020 Chin. J. Lasers 47 292
[26] Gao W S, Xiao M, Chan C T, Tam W Y 2015 Opt. Lett. 40 5259Google Scholar
-
图 2 由PCI和PCII构成的组合结构 (a) 组合结构PCI + PCII的反射谱; (b) 组合结构PCI + PCII + PCI的反射谱; (c) 组合结构PCI + PCII的反射谱和表面阻抗虚部; (d) 组合结构PCI + PCII + PCI的反射谱和表面阻抗虚部
Fig. 2. Combined structures composed of PCI and PCII: (a) Reflection spectrum of combined structure PCI + PCII; (b) reflection spectrum of combined structure PCI + PCII + PCI; (c) reflection spectra and imaginary part of surface impedance of combined structure PCI + PCII; (d) reflection spectrum and imaginary part of surface impedance of combined structure PCI + PCII + PCI.
图 3 组合结构PCI(N) + PCII(N) + PCI(N)随元胞数改变的计算结果 (a) 组合结构随元胞数N变化的光谱; (b) 两个界面态位置λ1, λ2随元胞数N改变的计算结果
Fig. 3. Calculation results of combined structure PCI (N) + PCII (N) + PCI (N) with changing of the unit cell numbers N: (a) The spectra of the combined structure with the different N; (b) two interface states of the combined structures with different N.
图 4 组合结构PCI(N) + PCII(M) + PCI(N)随元胞数改变的计算结果 (a) 组合结构随PCII元胞数M变化的光谱(保持N = 3不变); (b) 保持M = 2N的条件不变, 组合结构的两个界面态λ1, λ2随元胞数N改变的计算结果
Fig. 4. Calculation results of combined structures PCI (N ) + PCII (M ) + PCI (N ) with changing of the unit cell numbers M: (a) The spectra of the combined structures with different M (keep N = 3 unchanged); (b) keeping the condition of M = 2N unchanged, the two interface states of the composite structures with different N.
图 7 元胞数对界面态调控的实验测量结果 (a) 含不同元胞数N的组合结构PCI(N) + PCII(N) + PCI(N)的反射光谱测量结果; (b) 含不同元胞数M的组合结构PCI(N) + PCII(M) + PCI(N)的反射光谱测量结果(N = 3)
Fig. 7. Experiment results of unit cell numbers regulation on the interface states: (a) Reflection spectrum of the fabricated structures PCI (N) + PCII (N) + PCI (N) with different N; (b) reflection spectrum of the fabricated structures PCI (N) + PCII (M) + PCI (N) with different M (keep N = 3).
-
[1] 段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英 2019 68 144201Google Scholar
Duan X K, Ren J J, Hao H, Zhang Q, Gong Q H, Gu Y 2019 Acta Phys. Sin. 68 144201Google Scholar
[2] 李林, 程亚, 祝世宁 2021 物理 50 308Google Scholar
Li L, Cheng Y, Zhu S N 2021 Physics 50 308Google Scholar
[3] Zhang Y B, Liu H, Cheng H, Tian J G, Chen S Q 2020 Opto-Electron. Adv. 3 200002Google Scholar
[4] 朱韵至 2020 博士学位论文 (南京: 南京大学)
Zhu Y Z 2020 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)
[5] Deng Z L, Tu Q A, Wang Y J, Wang Z Q, Shi T, Feng Z W, Qiao X C, Wang G P, Xiao S M, Li X P 2021 Adv. Mater. 33 2103472Google Scholar
[6] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar
[7] John S 1987 Phys. Rev. Lett. 58 2486Google Scholar
[8] 顾国昌, 李宏强, 陈洪涛, 陈鸿, 吴翔 2000 光学学报 20 728
Gu G C, Li H Q, Chen H T, Chen H, Wu X 2000 Acta Opt. Sin. 20 728
[9] 杜桂强, 刘念华 2004 53 1095Google Scholar
Du G Q, Liu N H 2004 Acta Phys. Sin. 53 1095Google Scholar
[10] Biswal A, Kumar R, Nayak C, Dhanalakshmi S 2021 Optik 234 166597Google Scholar
[11] Liu X J, Ren M L, Pan Q, Zhang X R, Ma J, Wu X Y 2020 Physica E 126 114415Google Scholar
[12] Taya S A, Doghmosh N, Upadhyay A 2021 Opt. Quantum Electron. 53 35Google Scholar
[13] 张正仁, 隆正文, 袁玉群, 刁心峰 2010 59 587Google Scholar
Zhang Z R, Long Z W, Yuan Y Q, Diao X F 2010 Acta Phys. Sin. 59 587Google Scholar
[14] Xu X F, Huang J Y, Zhang H, Guo X Y, Mu S S, Liu Y Q, Zhai N 2021 Opt. Commun. 498 127262Google Scholar
[15] Tan H Y, Zhou M J, Zhuge L J, Wu X M 2021 J. Phys. D: Appl. Phys. 54 085106Google Scholar
[16] Kalozoumis P A, Theocharis G, Achilleos V, Félix S, Richoux O, Pagneux V 2018 Phys. Rev. A 98 023838Google Scholar
[17] Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017Google Scholar
[18] 高慧芬, 周小芳, 黄学勤 2022 71 044301Google Scholar
Gao H F, Zhou X F, Huang X Q 2022 Acta Phys. Sin. 71 044301Google Scholar
[19] Liu Q, Sun J D, Sun Y D, Ren Z H, Liu C, Lv J W, Wang F M, Wang L Y, Liu W, Sun T, Chu P K 2020 Opt. Mater. 102 109800Google Scholar
[20] Feng S, Ren C, Wang W Z, Wang Y Q 2013 Opt. Commun. 289 144Google Scholar
[21] 刘博文, 胡明列, 宋有建, 柴路, 王清月 2008 中国激光 03 479Google Scholar
Liu B W, Hu M L, Song Y J, Chai L, Wang Q Y 2008 Chin. J. Lasers 03 479Google Scholar
[22] Zaghdoudi J, Kanzari M 2018 Optik 160 189Google Scholar
[23] Elshahat S, Abood I, Esmail M S M, Ouyang Z B, Lu C C 2021 Nanomaterials-Basel 11 194Google Scholar
[24] 高冬 2019 硕士学位论文 (青岛: 青岛科技大学)
Gao D 2019 M. S. Thesis (Qingdao: Qingdao University of science and technology) (in Chinese)
[25] 毛维涛, 李杨, 赵秋玲, 滕利华, 王霞 2020 中国激光 47 292
Mao W T, Li Y, Zhao Q L, Teng L H, Wang X 2020 Chin. J. Lasers 47 292
[26] Gao W S, Xiao M, Chan C T, Tam W Y 2015 Opt. Lett. 40 5259Google Scholar
计量
- 文章访问数: 3714
- PDF下载量: 47
- 被引次数: 0