搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低维材料中的电荷密度波

樊金泽 方展伯 罗超杰 张汇

引用本文:
Citation:

低维材料中的电荷密度波

樊金泽, 方展伯, 罗超杰, 张汇

Charge density waves in low-dimensional material

Fan Jin-Ze, Fang Zhan-Bo, Luo Chao-Jie, Zhang Hui
PDF
HTML
导出引用
  • 电荷密度波(charge density wave, CDW)是低维体系中存在的一种重要的物理现象, 对CDW的研究有助于人们对低维系统中内禀电声子耦合和关联等相互作用有更深层次的认识, 同时通过对材料中CDW的精准调控可以有效控制低维材料中磁性、超导等物理性质. CDW的研究最早起源于一维和准一维材料, 本文首先简要介绍了CDW的一些基本性质和一维体系中CDW的一些研究. 而近些年的研究发现CDW在很多二维材料中普遍存在. 本文将着重介绍二维材料中CDW的最新研究进展. 通过介绍二维材料中CDW的基本物性和产生机理, 讨论CDW与Mott相、超导序和其他序(自旋密度波、配对密度波)之间的相互作用; 探讨CDW中存在的多电子集体激发和手性性质; 介绍掺杂、高压和激光脉冲等手段对CDW的调控; 最后展望相关领域中可能的研究方向.
    Charge density waves (CDWs) have triggered off extensive research in low-dimensional systems. The discovery of CDW offers a new crucial clue to understanding the intrinsic mechanisms of low-dimensional electron-phonon coupling and electron correlation. In addition, the physical properties of low-dimensional material such as magnetism and superconductivity can be fine-tuned with accurately and effectively controlled CDW phase. At the beginning,we briefly introduce the basic properties of CDW in one-dimensional and quasi one-dimensional materials, revealing the physical proprieties of the CDW, for instance, the excited state and the manipulation technologies. Then, focusing on the CDW in a two-dimensional system, we mainly introduce the recent research progress and the generation mechanism of CDW of two-dimensional materials. The interaction between CDW and Mott insulator and between superconductivity and other orders such as spin density wave and pair density wave provide a new perspective to research the multi-electron collective excitation and electron interaction. The manipulation of multi-electron collective excitation and electron-phonon interaction in CDW through doping, high pressure and laser pulse is also introduced and shares similarity with the one-dimensional system. Finally, in this article we propose a potential research application of two dimensional CDW.
      通信作者: 张汇, huiz@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0205004)和国家自然科学基金(批准号: 11804324, 12074357)资助的课题.
      Corresponding author: Zhang Hui, huiz@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0205004) and the National Natural Science Foundation of China (Grant Nos. 11804324, 12074357).
    [1]

    Grüner G 2018 Density Waves in Solids (Boca Raton: CRC Press)

    [2]

    Johannes M D, Mazin I I 2008 Phys. Rev. B 77 165135Google Scholar

    [3]

    Peierls R E, Peierls R S 1955 Quantum Theory of Solids (Oxford: Oxford University Press)

    [4]

    Zhu X, Guo J, Zhang J, Plummer E W 2017 Adv. Phys. X 2 622Google Scholar

    [5]

    Woll Jr E, Kohn W 1962 Phys. Rev. 126 1693Google Scholar

    [6]

    Overhauser A 1962 Phys. Rev. 128 1437Google Scholar

    [7]

    Overhauser A 1968 Phys. Rev. 167 691Google Scholar

    [8]

    Berlinsky A 1979 Rep. Prog. Phys. 42 1243Google Scholar

    [9]

    Koizumi K, Ishizaka K, Kiss T, Okawa M, Kato R, Shin S 2013 J. Phys. Soc. Jpn. 82 025004Google Scholar

    [10]

    Mook H A, Watson C R 1976 Phys. Rev. Lett. 36 801Google Scholar

    [11]

    Coleman L B, Cohen M J, Sandman D J, Yamagishi F G, Garito A F, Heeger A J 1973 Solid State Commun. 12 1125Google Scholar

    [12]

    Chu C W, Harper J M E, Geballe T H, Greene R L 1973 Phys. Rev. Lett. 31 1491Google Scholar

    [13]

    Li P, Lv B, Fang Y, Guo W, Wu Z, Wu Y, Shen D, Nie Y, Petaccia L, Cao C, Xu Z A, Liu Y 2021 Sci. China: Phys. Mech. Astron. 64 237412Google Scholar

    [14]

    Snijders P C, Weitering H H 2010 Rev. Mod. Phys. 82 307Google Scholar

    [15]

    Grüner G 1988 Rev. Mod. Phys. 60 1129Google Scholar

    [16]

    Gor'kov L P, Grüner G 2012 Charge Density Waves in Solids (North Holland: Elsevier)

    [17]

    Xu Z, Yang H, Song X, Chen Y, Yang H, Liu M, Zhang Q, Liu L, Wang Y 2021 Nanotechnology 32 492001Google Scholar

    [18]

    Wilson J A, Di Salvo F J, Mahajan S 1975 Adv. Phys. 24 117Google Scholar

    [19]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L, McEuen P L 1999 Nature 397 598Google Scholar

    [20]

    Deshpande V V, Bockrath M 2008 Nat. Phys. 4 314Google Scholar

    [21]

    Oncel N, van Houselt A, Huijben J, Hallbäck A S, Gurlu O, Zandvliet H J, Poelsema B 2005 Phys. Rev. Lett. 95 116801Google Scholar

    [22]

    van Houselt A, Oncel N, Poelsema B, Zandvliet H J 2006 Nano Lett. 6 1439Google Scholar

    [23]

    Guo J, Lee G, Plummer E W 2005 Phys. Rev. Lett. 95 046102Google Scholar

    [24]

    Okamoto H, Matsuzaki H, Wakabayashi T, Takahashi Y, Hasegawa T 2007 Phys. Rev. Lett. 98 037401Google Scholar

    [25]

    Su W P, Schrieffer J, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [26]

    Ye X S, Liu Y J, Zeng X H, Wu G 2015 Sci. Rep. 5 17358Google Scholar

    [27]

    Yoon H, Lee J, Park S, Lyo I W, Kang M H 2005 Phys. Rev. B 72 155443Google Scholar

    [28]

    Ahn J, Yeom H, Yoon H, Lyo I W 2003 Phys. Rev. Lett. 91 196403Google Scholar

    [29]

    Yeom H W, Ahn J R, Yoon H S, Lyo I W, Jeong H, Jeong S 2005 Phys. Rev. B 72 035323Google Scholar

    [30]

    Park S J, Yeom H W, Min S H, Park D H, Lyo I W 2004 Phys. Rev. Lett. 93 106402Google Scholar

    [31]

    Kumpf C, Bunk O, Zeysing J, Su Y, Nielsen M, Johnson R, Feidenhans R, Bechgaard K 2000 Phys. Rev. Lett. 85 4916Google Scholar

    [32]

    González C, Ortega J, Flores F 2005 New J. Phys. 7 100Google Scholar

    [33]

    Ahn J, Byun J, Kim J, Yeom H 2007 Phys. Rev. B 75 033313Google Scholar

    [34]

    Yeom H W, Takeda S, Rotenberg E, Matsuda I, Horikoshi K, Schaefer J, Lee C, Kevan S, Ohta T, Nagao T 1999 Phys. Rev. Lett. 82 4898Google Scholar

    [35]

    Tanikawa T, Matsuda I, Kanagawa T, Hasegawa S 2004 Phys. Rev. Lett. 93 016801Google Scholar

    [36]

    González C, Flores F, Ortega J 2006 Phys. Rev. Lett. 96 136101Google Scholar

    [37]

    González C, Guo J, Ortega J, Flores F, Weitering H H 2009 Phys. Rev. Lett. 102 115501Google Scholar

    [38]

    Zeng C, Kent P R C, Kim T H, Li A P, Weitering H H 2008 Nat. Mater. 7 539Google Scholar

    [39]

    Park S J, Yeom H W, Ahn J R, Lyo I W 2005 Phys. Rev. Lett. 95 126102Google Scholar

    [40]

    Chiang C K, Fincher Jr C, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098Google Scholar

    [41]

    Cohen M J, Heeger A 1977 Phys. Rev. B 16 688Google Scholar

    [42]

    Ong N, Monceau P 1977 Phys. Rev. B 16 3443Google Scholar

    [43]

    Zettl A, Grüner G, Thompson A 1982 Phys. Rev. B 26 5760Google Scholar

    [44]

    Lopes E, Matos M, Henriques R, Almeida M, Dumas J 1995 Synth. Met. 70 1267Google Scholar

    [45]

    McCarten J, DiCarlo D, Maher M, Adelman T, Thorne R 1992 Phys. Rev. B 46 4456Google Scholar

    [46]

    Grüner G, Tippie L, Sanny J, Clark W, Ong N 1980 Phys. Rev. Lett. 45 935Google Scholar

    [47]

    Wu W Y, Mihaly L, Mozurkewich G, Gruner G 1986 Phys. Rev. B 33 2444Google Scholar

    [48]

    Zhang H, Choi J H, Xu Y, Wang X, Zhai X, Wang B, Zeng C, Cho J H, Zhang Z, Hou J G 2011 Phys. Rev. Lett. 106 026801Google Scholar

    [49]

    Cheon S, Kim T H, Lee S H, Yeom H W 2015 Science 350 182Google Scholar

    [50]

    Kim T H, Cheon S, Yeom H W 2017 Nat. Phys. 13 444Google Scholar

    [51]

    Park J W, Do E, Shin J S, Song S K, Stetsovych O, Jelinek P, Yeom H W 2022 Nat. Nanotechnol. 17 244Google Scholar

    [52]

    Lee G, Shim H, Hyun J M, Kim H 2019 Phys. Rev. Lett. 122 016102Google Scholar

    [53]

    Lee G, Yu S Y, Kim H, Koo J Y 2004 Phys. Rev. B 70 121304Google Scholar

    [54]

    Oh D M, Wippermann S, Schmidt W G, Yeom H W 2014 Phys. Rev. B 90 155432Google Scholar

    [55]

    Terada Y, Yoshida S, Okubo A, Kanazawa K, Xu M, Takeuchi O, Shigekawa H 2008 Nano Lett. 8 3577Google Scholar

    [56]

    Lee S, Ahn J, Kim N, Min J, Hwang C, Chung J, Yeom H, Ryjkov S V, Hasegawa S 2002 Phys. Rev. Lett. 88 196401Google Scholar

    [57]

    Morikawa H, Hwang C, Yeom H W 2010 Phys. Rev. B 81 075401Google Scholar

    [58]

    Zhang H, Ming F, Kim H J, Zhu H, Zhang Q, Weitering H H, Xiao X, Zeng C G, Cho J H, Zhang Z 2014 Phys. Rev. Lett. 113 196802Google Scholar

    [59]

    Kim S W, Kim H J, Ming F, Jia Y, Zeng C G, Cho J H, Zhang Z 2015 Phys. Rev. B 91 174434Google Scholar

    [60]

    Song S K, Yeom H W 2021 Phys. Rev. B 104 035420Google Scholar

    [61]

    Batzill M 2018 J. Phys. Condens. Matter 30 493001Google Scholar

    [62]

    Xia Y, Zhang J, Jin Y, Ho W, Xu H, Xie M H 2020 ACS Nano 14 10716Google Scholar

    [63]

    He X, Zhang L, Chua R, Wong P K J, Arramel A, Feng Y P, Wang S J, Chi D, Yang M, Huang Y L, Wee A T S 2019 Nat. Commun. 10 2847Google Scholar

    [64]

    Liu H, Jiao L, Yang F, Cai Y, Wu X, Ho W, Gao C, Jia J, Wang N, Fan H, Yao W, Xie M H 2014 Phys. Rev. Lett. 113 066105Google Scholar

    [65]

    Barja S, Wickenburg S, Liu Z F, Zhang Y, Ryu H, Ugeda M M, Hussain Z, Shen Z X, Mo S K, Wong E 2016 Nat. Phys. 12 751Google Scholar

    [66]

    Ma Y, Diaz H C, Avila J, Chen C, Kalappattil V, Das R, Phan M H, Čadež T, Carmelo J M P, Asensio M C, Batzill M 2017 Nat. Commun. 8 14231Google Scholar

    [67]

    Krishnamurthi S, Brocks G 2020 Phys. Rev. B 102 161106Google Scholar

    [68]

    Lasek K, Li J, Kolekar S, Coelho P M, Zhang M, Wang Z, Batzill M 2021 Surf. Sci. Rep. 76 100523Google Scholar

    [69]

    Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X, Hu J 2021 arXiv: 2109.10809 [cond-mat.supr-con]

    [70]

    Wise W, Boyer M, Chatterjee K, Kondo T, Takeuchi T, Ikuta H, Wang Y, Hudson E 2008 Nat. Phys. 4 696Google Scholar

    [71]

    Duvjir G, Choi B K, Jang I, Ulstrup S, Kang S, Thi Ly T, Kim S, Choi Y H, Jozwiak C, Bostwick A 2018 Nano Lett. 18 5432Google Scholar

    [72]

    Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V, Chiang T C 2018 Phys. Rev. Lett. 121 196402Google Scholar

    [73]

    Brouet V, Yang W L, Zhou X J, Hussain Z, Ru N, Shin K Y, Fisher I R, Shen Z X 2004 Phys. Rev. Lett. 93 126405Google Scholar

    [74]

    Straub T, Finteis T, Claessen R, Steiner P, Hüfner S, Blaha P, Oglesby C, Bucher E 1999 Phys. Rev. Lett. 82 4504Google Scholar

    [75]

    Borisenko S, Kordyuk A, Zabolotnyy V, Inosov D, Evtushinsky D, Büchner B, Yaresko A, Varykhalov A, Follath R, Eberhardt W 2009 Phys. Rev. Lett. 102 166402Google Scholar

    [76]

    Naito M, Tanaka S 1982 J. Phys. Soc. Jpn. 51 219Google Scholar

    [77]

    Johannes M, Mazin I, Howells C 2006 Phys. Rev. B 73 205102Google Scholar

    [78]

    Arguello C J, Rosenthal E P, Andrade E F, Jin W, Yeh P C, Zaki N, Jia S, Cava R J, Fernandes R M, Millis A J, Valla T, Osgood R M, Pasupathy A N 2015 Phys. Rev. Lett. 114 037001Google Scholar

    [79]

    Rice T, Scott G 1975 Phys. Rev. Lett. 35 120Google Scholar

    [80]

    Liu Z, Zhao N, Yin Q, Gong C, Tu Z, Li M, Song W, Liu Z, Shen D, Huang Y, Liu K, Lei H, Wang S 2021 Phys. Rev. X 11 041010Google Scholar

    [81]

    Zhou X, Li Y, Fan X, Hao J, Dai Y, Wang Z, Yao Y, Wen H H 2021 Phys. Rev. B 104 L041101Google Scholar

    [82]

    Zhu X, Cao Y, Zhang J, Plummer E W, Guo J 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2367Google Scholar

    [83]

    Valla T, Fedorov A V, Johnson P D, Glans P A, McGuinness C, Smith K E, Andrei E Y, Berger H 2004 Phys. Rev. Lett. 92 086401Google Scholar

    [84]

    Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami T, Said A, Reznik D 2011 Phys. Rev. Lett. 107 107403Google Scholar

    [85]

    Weber F, Hott R, Heid R, Bohnen K P, Rosenkranz S, Castellan J P, Osborn R, Said A, Leu B, Reznik D 2013 Phys. Rev. B 87 245111Google Scholar

    [86]

    Arguello C J, Chockalingam S P, Rosenthal E P, Zhao L, Gutiérrez C, Kang J, Chung W, Fernandes R M, Jia S, Millis A J 2014 Phys. Rev. B 89 235115Google Scholar

    [87]

    Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 12 92Google Scholar

    [88]

    Di Salvo F J, Moncton D, Waszczak J 1976 Phys. Rev. B 14 4321Google Scholar

    [89]

    Bachrach R, Skibowski M, Brown F C 1976 Phys. Rev. Lett. 37 40Google Scholar

    [90]

    van Wezel J, Nahai-Williamson P, Saxena S S 2010 Phys. Rev. B 81 165109Google Scholar

    [91]

    Whangbo M H, Canadell E 1992 J. Am. Chem. Soc. 114 9587Google Scholar

    [92]

    Wegner A, Zhao J, Li J, Yang J, Anikin A, Karapetrov G, Esfarjani K, Louca D, Chatterjee U 2020 Phys. Rev. B 101 195145Google Scholar

    [93]

    Li G, Hu W, Qian D, Hsieh D, Hasan M, Morosan E, Cava R J, Wang N 2007 Phys. Rev. Lett. 99 027404Google Scholar

    [94]

    Monney C, Schwier E, Garnier M G, Mariotti N, Didiot C, Cercellier H, Marcus J, Berger H, Titov A, Beck H 2010 New J. Phys. 12 125019Google Scholar

    [95]

    Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L, Tutiš E 2008 Nat. Mater. 7 960Google Scholar

    [96]

    Rossnagel K, Smith N 2006 Phys. Rev. B 73 073106Google Scholar

    [97]

    Shao D, Xiao R, Lu W, Lv H, Li J, Zhu X, Sun Y 2016 Phys. Rev. B 94 125126Google Scholar

    [98]

    Tresca C, Calandra M 2019 2D Mater. 6 035041Google Scholar

    [99]

    Liu M, Leveillee J, Lu S, Yu J, Kim H, Tian C, Shi Y, Lai K, Zhang C, Giustino F, Shih C K 2021 Sci. Adv. 7 eabi6339Google Scholar

    [100]

    Martino E, Putzke C, König M, Moll P J W, Berger H, LeBoeuf D, Leroux M, Proust C, Akrap A, Kirmse H, Koch C, Zhang S, Wu Q, Yazyev O V, Forró L, Semeniuk K 2021 npj 2D Mater. Appl. 5 86Google Scholar

    [101]

    Ma L G, Ye C, Yu Y J, Lu X F, Niu X H, Kim S, Feng D L, Tománek D, Son Y W, Chen X H, Zhang Y B 2016 Nat. Commun. 7 10956Google Scholar

    [102]

    Cho D, Cheon S, Kim K S, Lee S H, Cho Y H, Cheong S W, Yeom H W 2016 Nat. Commun. 7 10453Google Scholar

    [103]

    Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S, Mihailovic D 2014 Science 344 177Google Scholar

    [104]

    Vaskivskyi I, Gospodaric J, Brazovskii S, Svetin D, Sutar P, Goreshnik E, Mihailovic I A, Mertelj T, Mihailovic D 2015 Sci. Adv. 1 e1500168Google Scholar

    [105]

    Gerasimenko Y A, Karpov P, Vaskivskyi I, Brazovskii S, Mihailovic D 2019 npj Quantum Mater. 4 32Google Scholar

    [106]

    Hollander M J, Liu Y, Lu W J, Li L J, Sun Y P, Robinson J A, Datta S 2015 Nano Lett. 15 1861Google Scholar

    [107]

    Tsen A W, Hovden R, Wang D, Kim Y D, Okamoto J, Spoth K A, Liu Y, Lu W, Sun Y, Hone J C 2015 Proc. Natl. Acad. Sci. U. S. A. 112 15054Google Scholar

    [108]

    Shen S, Yuan X, Wen C, Gao J, Luo X, Lu X, Sun Y P, Yan S C 2020 Phys. Rev. Mater. 4 064007Google Scholar

    [109]

    Shen S, Shao B, Wen C, Yuan X, Gao J, Nie Z, Luo X, Huang B, Sun Y, Meng S, Yan S C 2020 Nano Lett. 20 8854Google Scholar

    [110]

    Wang X, Liu H, Wu J, Lin J, He W, Wang H, Shi X, Suenaga K, Xie L 2018 Adv. Mater. 30 1800074Google Scholar

    [111]

    Yu Y, Yang F, Lu X F, Yan Y J, Cho Y H, Ma L, Niu X, Kim S, Son Y W, Feng D 2015 Nat. Nanotechnol. 10 270Google Scholar

    [112]

    Yoshida M, Suzuki R, Zhang Y, Nakano M, Iwasa Y 2015 Sci. Adv. 1 e1500606Google Scholar

    [113]

    Sakabe D, Liu Z, Suenaga K, Nakatsugawa K, Tanda S 2017 npj Quantum Mater. 2 22Google Scholar

    [114]

    Lin H, Huang W, Zhao K, Qiao S, Liu Z, Wu J, Chen X, Ji S H 2020 Nano Res. 13 133Google Scholar

    [115]

    Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V, Chiang T C 2015 Nat. Commun. 6 8943Google Scholar

    [116]

    Chen P, Chan Y H, Wong M H, Fang X Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V, Chiang T C 2016 Nano Lett. 16 6331Google Scholar

    [117]

    Sugawara K, Nakata Y, Shimizu R, Han P, Hitosugi T, Sato T, Takahashi T 2016 ACS nano 10 1341Google Scholar

    [118]

    Kolekar S, Bonilla M, Ma Y, Diaz H C, Batzill M 2017 2D Mater. 5 015006Google Scholar

    [119]

    Guster B, Canadell E, Pruneda M, Ordejón P 2018 2D Mater. 5 025024Google Scholar

    [120]

    Chen Y, Wu L, Xu H, Cong C, Li S, Feng S, Zhang H, Zou C, Shang J, Yang S A, Loh K P, Huang W, Yu T 2020 Adv. Mater. 32 2003746Google Scholar

    [121]

    Oh E, Gye G, Yeom H W 2020 Phys. Rev. Lett. 125 036804Google Scholar

    [122]

    Xie X, Lin D, Zhu L, Li Q, Zong J, Chen W, Meng Q, Tian Q, Li S C, Xi X 2021 Chin. Phys. Lett. 38 107101Google Scholar

    [123]

    Mott N 2004 Metal-Insulator Transitions (CRC Press)

    [124]

    Wang Y D, Yao W L, Xin Z M, Han T T, Wang Z G, Chen L, Cai C, Li Y, Zhang Y 2020 Nat. Commun. 11 4215Google Scholar

    [125]

    Fazekas P, Tosatti E 1979 Philos. Mag. B 39 229Google Scholar

    [126]

    Wen C, Gao J, Xie Y, Zhang Q, Kong P, Wang J, Jiang Y, Luo X, Li J, Lu W, Sun Y P, Yan S C 2021 Phys. Rev. Lett. 126 256402Google Scholar

    [127]

    Stahl Q, Kusch M, Heinsch F, Garbarino G, Kretzschmar N, Hanff K, Rossnagel K, Geck J, Ritschel T 2020 Nat. Commun. 11 1247Google Scholar

    [128]

    Chen Y, Ruan W, Wu M, Tang S, Ryu H, Tsai H Z, Lee R L, Kahn S, Liou F, Jia C 2020 Nat. Phys. 16 218Google Scholar

    [129]

    Ramšak N, van Midden H, Prodan A, Marinković V, Boswell F, Bennett J 1999 Phys. Rev. B 60 4513Google Scholar

    [130]

    Kadijk F, Jellinek F 1971 J. Less-Common Met. 23 437Google Scholar

    [131]

    Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8 e321Google Scholar

    [132]

    Liu L W, Yang H, Huang Y T, Song X, Zhang Q Z, Huang Z P, Hou Y H, Chen Y Y, Xu Z Q, Zhang T, Wu X, Sun J T, Huang Y, Zheng F W, Li X B, Yao Y G, Gao H J, Wang Y L 2021 Nat. Commun. 12 1978Google Scholar

    [133]

    Zhang Q, Hou Y, Zhang T, Xu Z, Huang Z, Yuan P, Jia L, Yang H, Huang Y, Ji W, Qiao J S, Wu X, Wang Y L 2021 ACS Nano 15 16589Google Scholar

    [134]

    Liu Z Y, Qiao S, Huang B, Tang Q Y, Ling Z H, Zhang W H, Xia H N, Liao X, Shi H, Mao W H, Zhu G L, Lü J T, Fu Y S 2021 Nano Lett. 21 7005Google Scholar

    [135]

    Pouget J, Ravy S 1997 Synth. Met. 85 1523Google Scholar

    [136]

    Kobayashi N, Ogata M, Yonemitsu K 1998 J. Phys. Soc. Jpn. 67 1098Google Scholar

    [137]

    Jérome D, Mazaud A, Ribault M, Bechgaard K 1980 J. Phys. , Lett. 41 95Google Scholar

    [138]

    Vuletić T, Auban-Senzier P, Pasquier C, Tomić S, Jérome D, Heritier M, Bechgaard K 2002 Eur. Phys. J. B 25 319Google Scholar

    [139]

    Kang N, Salameh B, Auban-Senzier P, Jérome D, Pasquier C, Brazovskii S 2010 Phys. Rev. B 81 100509Google Scholar

    [140]

    Jang H, Lee W S, Song S, Nojiri H, Matsuzawa S, Yasumura H, Huang H, Liu Y J, Porras J, Minola M 2018 Phys. Rev. B 97 224513Google Scholar

    [141]

    Wen J J, Huang H, Lee S J, Jang H, Knight J, Lee Y S, Fujita M, Suzuki K M, Asano S, Kivelson S A, Kao C C, Lee J S 2019 Nat. Commun. 10 3269Google Scholar

    [142]

    Enayat M, Sun Z, Singh U R, Aluru R, Schmaus S, Yaresko A, Liu Y, Lin C, Tsurkan V, Loidl A 2014 Science 345 653Google Scholar

    [143]

    Zabel H 1999 J. Phys. Condens. Matter 11 9303Google Scholar

    [144]

    Gibbs D, Mohanty K, Bohr J 1988 Phys. Rev. B 37 562Google Scholar

    [145]

    Young C, Sokoloff J 1974 J. Phys. F:Met. Phys. 4 1304Google Scholar

    [146]

    Hsu P J, Mauerer T, Wu W, Bode M 2013 Phys. Rev. B 87 115437Google Scholar

    [147]

    Hu Y, Zhang T, Zhao D, Chen C, Ding S, Yang W, Wang X, Li C, Wang H, Feng D L, Zhang T 2022 Nat. Commun. 13 445Google Scholar

    [148]

    van Efferen C, Berges J, Hall J, van Loon E, Kraus S, Schobert A, Wekking T, Huttmann F, Plaar E, Rothenbach N, Ollefs K, Arruda L M, Brookes N, Schönhoff G, Kummer K, Wende H, Wehling T, Michely T 2021 Nat. Commun. 12 6837Google Scholar

    [149]

    Proust C, Taillefer L 2019 Annu. Rev. Condens. Matter Phys. 10 409Google Scholar

    [150]

    Mukhopadhyay S, Sharma R, Kim C K, Edkins S D, Hamidian M H, Eisaki H, Uchida S I, Kim E A, Lawler M J, Mackenzie A P 2019 Proc. Natl. Acad. Sci. USA 116 13249Google Scholar

    [151]

    Loret B, Auvray N, Gallais Y, Cazayous M, Forget A, Colson D, Julien M H, Paul I, Civelli M, Sacuto A 2019 Nat. Phys. 15 771Google Scholar

    [152]

    Briggs A, Monceau P, Nunez-Regueiro M, Peyrard J, Ribault M, Richard J 1980 J. Phys. C:Solid State Phys. 13 2117Google Scholar

    [153]

    Núñez-Regueiro M, Mignot J M, Jaime M, Castello D, Monceau P 1993 Synth. Met. 56 2653Google Scholar

    [154]

    Liu Z Y, Li J, Zhang J F, Li J, Yang P T, Zhang S, Chen G F, Uwatoko Y, Yang H X, Sui Y, Liu K, Cheng J G 2021 npj Quantum Mater. 6 90Google Scholar

    [155]

    Berthier C, Molinié P, Jérome D 1976 Solid State Commun. 18 1393Google Scholar

    [156]

    Kiss T, Yokoya T, Chainani A, Shin S, Hanaguri T, Nohara M, Takagi H 2007 Nat. Phys. 3 720Google Scholar

    [157]

    Zhou K, Deng J, Guo L, Guo J 2020 Chin. Phys. Lett. 37 097402Google Scholar

    [158]

    Morris R 1975 Phys. Rev. Lett. 34 1164Google Scholar

    [159]

    Chatterjee U, Zhao J, Iavarone M, Di Capua R, Castellan J P, Karapetrov G, Malliakas C D, Kanatzidis M G, Claus H, Ruff J P C, Weber F, van Wezel J, Campuzano J C, Osborn R, Randeria M, Trivedi N, Norman M R, Rosenkranz S 2015 Nat. Commun. 6 6313Google Scholar

    [160]

    Hauser J, Robbins M, DiSalvo F 1973 Phys. Rev. B 8 1038Google Scholar

    [161]

    Yan D, Lin Y, Wang G, Zhu Z, Wang S, Shi L, He Y, Li M R, Zheng H, Ma J, Jia J F, Wang Y H, Luo H X 2019 Supercond. Sci. Technol. 32 085008Google Scholar

    [162]

    Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Guss J, Gartin P B, Wilde J M, Kreyssig A, McQueeney R J, Goldman A I, Mishra V, Hirschfeld P J, Prozorov R 2018 Nat. Commun. 9 2796Google Scholar

    [163]

    Scholz G, Singh O, Frindt R, Curzon A 1982 Solid State Commun. 44 1455Google Scholar

    [164]

    Nagata S, Aochi T, Abe T, Ebisu S, Hagino T, Seki Y, Tsutsumi K 1992 J. Phys. Chem. Solids 53 1259Google Scholar

    [165]

    Wagner K, Morosan E, Hor Y, Tao J, Zhu Y, Sanders T, McQueen T, Zandbergen H, Williams A, West D 2008 Phys. Rev. B 78 104520Google Scholar

    [166]

    Xu S, Gao J, Liu Z, Chen K, Yang P, Tian S, Gong C, Sun J, Xue M, Gouchi J, Luo X, Sun Y P, Uwatoko Y, Lei H C, Wang B, Cheng J G 2021 Phys. Rev. B 103 224509Google Scholar

    [167]

    Ang R, Tanaka Y, Ieki E, Nakayama K, Sato T, Li L, Lu W, Sun Y P, Takahashi T 2012 Phys. Rev. Lett. 109 176403Google Scholar

    [168]

    Li L, Lu W, Zhu X, Ling L, Qu Z, Sun Y P 2012 EPL 97 67005Google Scholar

    [169]

    Liu Y, Ang R, Lu W, Song W, Li L, Sun Y P 2013 Appl. Phys. Lett. 102 192602Google Scholar

    [170]

    Morosan E, Zandbergen H W, Dennis B, Bos J, Onose Y, Klimczuk T, Ramirez A, Ong N, Cava R J 2006 Nat. Phys. 2 544Google Scholar

    [171]

    Qian D, Hsieh D, Wray L, Morosan E, Wang N, Xia Y, Cava R, Hasan M 2007 Phys. Rev. Lett. 98 117007Google Scholar

    [172]

    Kogar A, de La Pena G A, Lee S, Fang Y, Sun S L, Lioi D B, Karapetrov G, Finkelstein K D, Ruff J P, Abbamonte P 2017 Phys. Rev. Lett. 118 027002Google Scholar

    [173]

    Yan S C, Iaia D, Morosan E, Fradkin E, Abbamonte P, Madhavan V 2017 Phys. Rev. Lett. 118 106405Google Scholar

    [174]

    Wang B S, Liu Y, Luo X, Ishigaki K, Matsubayashi K, Lu W, Sun Y, Cheng J, Uwatoko Y 2018 Phys. Rev. B 97 220504Google Scholar

    [175]

    Kusmartseva A F, Sipos B, Berger H, Forro L, Tutiš E 2009 Phys. Rev. Lett. 103 236401Google Scholar

    [176]

    Joe Y I, Chen X, Ghaemi P, Finkelstein K, de La Peña G, Gan Y, Lee J, Yuan S, Geck J, MacDougall G 2014 Nat. Phys. 10 421Google Scholar

    [177]

    Saqib H, Rahman S, Zhao Y, Cazorla C, Errandonea D, Susilo R, Zhuang Y, Huang y, Chen B, Dai N 2021 J. Phys. Chem. Lett. 12 9859Google Scholar

    [178]

    Lee S, Park T B, Kim J, Jung S G, Seong W K, Hur N, Luo Y, Kim D Y, Park T 2021 Phys. Rev. Res. 3 033097Google Scholar

    [179]

    Xu S, Yang P, Chen K, Liu Z, Cui W, Hu Q, Sun J, Ang R, Uwatoko Y, Wang B, Cheng J G 2021 Phys. Rev. B 104 134503Google Scholar

    [180]

    Xi X X, Zhao L, Wang Z, Berger H, Forró L, Shan J, Mak K F 2015 Nat. Nanotechnol. 10 765Google Scholar

    [181]

    Lian C S, Si C, Duan W H 2018 Nano Lett. 18 2924Google Scholar

    [182]

    Shi J, Chen X, Zhao L, Gong Y, Hong M, Huan Y, Zhang Z, Yang P, Li Y, Zhang Q H, Zhang Q, Gu L, Chen H J, Wang J, Deng S Z, Xu N S, Zhang Y F 2018 Adv. Mater. 30 1804616Google Scholar

    [183]

    Wu Y, He J, Liu J, Xing H, Mao Z, Liu Y 2018 Nanotechnology 30 035702Google Scholar

    [184]

    Lian C S, Heil C, Liu X, Si C, Giustino F, Duan W H 2019 J. Phys. Chem. Lett. 10 4076Google Scholar

    [185]

    Xie Y, Li Y, Bourges P, Ivanov A, Ye Z, Yin J-X, Hasan M Z, Luo A, Yao Y, Wang Z, Xu G, Dai P 2022 Phys. Rev. B 105 L140501Google Scholar

    [186]

    Luo H, Gao Q, Liu H, Gu Y, Wu D, Yi C, Jia J, Wu S, Luo X, Xu Y, Zhao L, Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z, Zhou X J 2022 Nat. Commun. 13 273Google Scholar

    [187]

    Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z, Chen X H 2021 Phys. Rev. X 11 031026Google Scholar

    [188]

    Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R, Wilson S D 2021 Phys. Rev. X 11 041030Google Scholar

    [189]

    Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, Wilson S D 2020 Phys. Rev. Lett. 125 247002Google Scholar

    [190]

    Wang Z, Wu Q, Yin Q, Gong C, Tu Z, Lin T, Liu Q, Shi L, Zhang S, Wu D 2021 Phys. Rev. B 104 165110Google Scholar

    [191]

    Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J, Chen X H 2021 Nat. Commun. 12 3645Google Scholar

    [192]

    Chen K, Wang N, Yin Q, Gu Y, Jiang K, Tu Z, Gong C, Uwatoko Y, Sun J, Lei H, Hu J P, Cheng J G 2021 Phys. Rev. Lett. 126 247001Google Scholar

    [193]

    Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, Chen X 2022 Nature 604 59Google Scholar

    [194]

    Wang N N, Chen K Y, Yin Q W, Ma Y N N, Pan B Y, Yang X, Ji X Y, Wu S L, Shan P F, Xu S X, Tu Z J, Gong C S, Liu G T, Li G, Uwatoko Y, Dong X L, Lei H C, Sun J P, Cheng J G 2021 Phys. Rev. Res. 3 043018Google Scholar

    [195]

    Qian T, Christensen M H, Hu C, Saha A, Andersen B M, Fernandes R M, Birol T, Ni N 2021 Phys. Rev. B 104 144506Google Scholar

    [196]

    Song Y, Ying T, Chen X, Han X, Wu X, Schnyder A P, Huang Y, Guo J G, Chen X L 2021 Phys. Rev. Lett. 127 237001Google Scholar

    [197]

    Berg E, Fradkin E, Kivelson S A 2009 Phys. Rev. B 79 064515Google Scholar

    [198]

    Agterberg D F, Davis J S, Edkins S D, Fradkin E, Van Harlingen D J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M, Wang Y 2020 Annu. Rev. Condens. Matter Phys. 11 231Google Scholar

    [199]

    Hamidian M, Edkins S, Joo S H, Kostin A, Eisaki H, Uchida S, Lawler M, Kim E A, Mackenzie A, Fujita K 2016 Nature 532 343Google Scholar

    [200]

    Du Z, Li H, Joo S H, Donoway E P, Lee J, Davis J S, Gu G, Johnson P D, Fujita K 2020 Nature 580 65Google Scholar

    [201]

    Edkins S D, Kostin A, Fujita K, Mackenzie A P, Eisaki H, Uchida S, Sachdev S, Lawler M J, Kim E A, Davis J S 2019 Science 364 976Google Scholar

    [202]

    Dai Z, Zhang Y H, Senthil T, Lee P A 2018 Phys. Rev. B 97 174511Google Scholar

    [203]

    Liu X, Chong Y X, Sharma R, Davis J S 2021 Science 372 1447Google Scholar

    [204]

    Chen H, Yang H, Hu B, et al. 2021 Nature 599 222Google Scholar

    [205]

    Zhou S, Wang Z 2021 arXiv: 2110.06266 [cond-mat.supr-con]

    [206]

    Uchida S, Tanabe K, Tanaka S 1978 Solid State Commun. 27 637Google Scholar

    [207]

    Ma Y C, Hou Y, Lu C, Li L, Petrovic C 2018 Phys. Rev. B 97 195117Google Scholar

    [208]

    Altvater M A, Tilak N, Rao S, Li G, Won C J, Cheong S W, Andrei E Y 2021 Nano Lett. 21 6132Google Scholar

    [209]

    Song C Y, Yuan X, Huang C, Huang S Y, Xing Q X, Wang C, Zhang C, Xie Y G, Lei Y C, Wang F J, Mu L, Zhang J S, Xiu F X, Yan H G 2021 Nat. Commun. 12 386Google Scholar

    [210]

    Shimano R, Tsuji N 2020 Annu. Rev. Condens. Matter Phys. 11 103Google Scholar

    [211]

    Sooryakumar R, Klein M 1980 Phys. Rev. Lett. 45 660Google Scholar

    [212]

    Littlewood P, Varma C 1981 Phys. Rev. Lett. 47 811Google Scholar

    [213]

    Méasson M A, Gallais Y, Cazayous M, Clair B, Rodiere P, Cario L, Sacuto A 2014 Phys. Rev. B 89 060503Google Scholar

    [214]

    Grasset R, Cea T, Gallais Y, Cazayous M, Sacuto A, Cario L, Benfatto L, Méasson M A 2018 Phys. Rev. B 97 094502Google Scholar

    [215]

    Grasset R, Gallais Y, Sacuto A, Cazayous M, Mañas-Valero S, Coronado E, Méasson M A 2019 Phys. Rev. Lett. 122 127001Google Scholar

    [216]

    Ishioka J, Liu Y, Shimatake K, Kurosawa T, Ichimura K, Toda Y, Oda M, Tanda S 2010 Phys. Rev. Lett. 105 176401Google Scholar

    [217]

    van Wezel J 2011 EPL 96 67011Google Scholar

    [218]

    Peng Y Y, Guo X, Xiao Q, Li Q, Strempfer J, Choi Y, Yan D, Luo H, Huang Y, Jia S, Janson O, Abbamonte P, van den Brink J, van Wezel J 2021 arXiv: 2105.13195 [cond-mat.str-el]

    [219]

    Xu S Y, Ma Q, Gao Y, Kogar A, Zong A, Mier Valdivia A M, Dinh T H, Huang S M, Singh B, Hsu C H, Chang T R, Ruff J P C, Watanabe K, Taniguchi T, Lin H, Karapetrov G, Xiao D, Jarillo-Herrero P, Gedik N 2020 Nature 578 545Google Scholar

    [220]

    Gao J, Zhang W, Si J, Luo X, Yan J, Jiang Z, Wang W, Lv H, Tong P, Song W, Zhu X B, Lu W J, Yin Y, Sun Y P 2021 Appl. Phys. Lett. 118 213105Google Scholar

    [221]

    Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X 2021 Nat. Mater. 20 1353Google Scholar

    [222]

    Wang Z, Jiang Y X, Yin J X, et al. 2021 Phys. Rev. B 104 075148Google Scholar

    [223]

    Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H, Shi Y, Yin Q, Lei H, Zhang S S 2021 Phys. Rev. B 104 035131Google Scholar

    [224]

    Poh S M, Tan S J, Zhao X, Chen Z, Abdelwahab I, Fu D, Xu H, Bao Y, Zhou W, Loh K P 2017 Adv. Mater. 29 1605641Google Scholar

    [225]

    Feng H, Xu Z, Zhuang J, Wang L, Liu Y, Xu X, Song L, Hao W, Du Y 2019 Adv. Funct. Mater. 29 1900367Google Scholar

    [226]

    Zhang Q, Huang Z, Hou Y, Yuan P, Xu Z, Yang H, Song X, Chen Y, Yang H, Zhang T 2021 J. Phys. Chem. Lett. 12 3545Google Scholar

    [227]

    Mraz A, Vaskivskyi I, Svetin D, Chernolevska Y, Mihailovic D 2021 Inf. MIDEM 51 167Google Scholar

    [228]

    Liu G, Debnath B, Pope T R, Salguero T T, Lake R K, Balandin A A 2016 Nat. Nanotechnol. 11 845Google Scholar

    [229]

    Pásztor Á, Scarfato A, Spera M, Flicker F, Barreteau C, Giannini E, Wezel J V, Renner C 2021 Nat. Commun. 12 6037Google Scholar

    [230]

    Chiu W C, Mardanya S, Markiewicz R, Nieminen J, Singh B, Hakioglu T, Agarwal A, Chang T R, Lin H, Bansil A 2021 arXiv:2104.14634 [cond-mat.mtrl-sci]

  • 图 1  一维Peierls相变的基本原理 (a) 均匀排列的一维原子链示意图; (b) Peierls相变后的原子链示意图; (c) 发生Peierls相变前后的能带结构, 能带在kF处打开带隙[2]; (d) 一维、二维和三维自由电子气的Lindhard响应函数实部[4]; (e) 2kF处的声子软化过程[4]

    Fig. 1.  Fundamentals of Peierls transition: (a) Diagram of uniformly arranged one-dimensional (1D) atomic chain; (b) diagram of the 1D atomic chain after Peierls transition; (c) band structure of the 1D atomic chain before and after Peierls transition, with a gap opening at kF[2]; (d) real part of Lindhard function for 1D, two-dimensional (2D) and three-dimensional (3D) free electron gas models[4]; (e) process of phonon softening at 2kF[4].

    图 2  (a) In-Si原子链在Peierls相变时的STM图, 插图是In-Si原子链相变前后的重构[39]; (b) In-Si原子链中存在的手性拓扑孤子的STM图[52]; (c) 缺陷调控的In-Si原子链金属相和绝缘相共存, 插图为缺陷密度对4×1相的面积分数的调控作用[58]; (d) MTB结构的示意图[62]; (e) 二维材料MoSe2中MTB的STM图[63]; (f) STS测量的二维材料MoSe2中MTB和畴中心的dI/dV[63]

    Fig. 2.  (a) STM image of Peierls transition in In-Si atomic chain. Inset: 4×1 reconstruction before the Peierls transition and 8 × 2 reconstruction after the Peierls transition[39]. (b) STM image of chiral topological solitons in In-Si atomic chain[52]. (c) STM images of the coexistence of metallic phase and CDW phase in defect-rich In-Si atomic chain. Inset: manipulation of defect density on areal fraction of 4 × 1 phase[58]. (d) Diagram of MTB structure[62]. (e) STM image of MTB in 2D material MoSe2[63]. (f) dI/dV spectrum of MTB and domain center in 2D material MoSe2 measured by STS[63].

    图 3  常见二维材料的CDW性质, 数据来源于文献[68, 69].

    Fig. 3.  CDW properties of 2D material, data from Ref. [68, 69].

    图 4  二维体系中CDW产生的几种机理图 (a) ARPES测量的单层VSe2费米面结构[71]; (b) 单层VSe2中的完美费米面嵌套[71]; (c) 通过非弹性X射线散射测量的不同温度下2H-NbSe2中电声子耦合导致的声子软化[84]; (d) ARPES测量的RbV3Sb5费米面结构, 在鞍点处有高态密度[80]; (e) 1T-TiSe2中Jahn-Teller畸变示意图[92]; (f) 1T-TiSe2中普通态和激子绝缘体的能带色散和光谱权重[94]

    Fig. 4.  Several mechanisms of CDW transitions: (a) Fermi surface map of monolayer VSe2 measured by ARPES[71]; (b) perfect Fermi surface nesting of monolayer VSe2[71]; (c) phonon softening in 2H-NbSe2 at different temperature induced by Electron-phonon coupling, measured by inelastic X-ray scattering[84]; (d) Fermi surface map of RbV3Sb5 measured by ARPES with high density of state around saddle point[80]; (e) diagram of Jahn-Teller distortions in 1T-TiSe2[92]; (f) band dispersions and corresponding spectral weights of normal state and exciton insulator in 1T-TiSe2[94].

    图 5  (a) 1T-TaS2中的David星、CCDW、NCCDW示意图[97]; (b) 2H-NbS2中的1T层示意图, 每个David星中心都有一个未配对的局域磁矩[100]

    Fig. 5.  (a) Diagrams of the Star of David pattern, CCDW, and NCCDW in 1T-TaS2[97]; (b) Diagram of the 1T layer in 2H-NbS2, each Star of David contains an unpaired magnetic moment localized in the center[100].

    图 6  二维体系中的CDW调控研究 (a) 1T-TaS2中电脉冲诱导金属镶嵌相的STM图像, 插图为金属镶嵌相中CCDW的David星构型, 未发生过改变[101]; (b) 光脉冲使1T-TaS2在CCDW和隐藏态之间切换, 插图为实验装置的示意图[104]; (c) 1T-TaS2中部分吸附水分子层的STM图像, 插图为STM图像的傅里叶变换, 存在 $ \sqrt{\text{13}}\times \sqrt{\text{13}} $ 和3×3两种CDW周期[109]; (d), (e) 单层的NbSe2/双层石墨烯和NbSe2/SrTiO3的STM图像[122]

    Fig. 6.  CDW manipulation in 2D system: (a) STM image of metallic mosaic phase induced by voltage pulses in 1T-TaS2. Inset: unchanged David-star formation in CCDW of metallic mosaic phase[101]. (b) Switching between CCDW and hidden state induced by optical pulse in 1T-TaS2. Inset: diagram of experimental setup[104]. (c) STM image of partially water-adsorbed 1T-TaS2. Inset: Fourier transform images of STM topography showing two types of CDW periodicity including $ \sqrt{\text{13}}\times\sqrt{\text{13}} $ and 3×3[109]. (d), (e) STM images of monolayer NbSe2/BLG and NbSe2/SrTiO3(111) [122].

    图 7  CDW与Mott绝缘体的关系 (a) 1T-TaS2中电阻和CDW相随温度的变化, 插图为CCDW、三斜CDW、NCCDW、ICCDW的示意图[124]; (b), (c) STM测量的1T-TaS2和4Hb-TaS2中dI/dV谱的空间分布, 插图为1T-TaS2和4Hb-TaS2结构的示意图[126]; (d) 单层1T-NbSe2的STM图像, UHB的分布相对CDW有$\sqrt{\text{3}}\times\sqrt{\text{3}}$R30°的超结构[132]; (e) 单层1T-NbSe2中电荷转移绝缘体示意图[99]; (f) STS测量的单层1T-NbSe2的dI/dV[99]

    Fig. 7.  Relationship between CDW and Mott insulators: (a) The changes of resistivity and CDW phase with respect to temperature in 1T-TaS2, where the insert is the diagram of CCDW, triclinic CDW, NCCDW and ICCDW[124]. (b), (c) Spatial distribution of dI/dV spectrum of 1T-TaS2 and 4Hb-TaS2 measured by STS. Insets are diagrams of their structure[126]. (d) STM image of monolayer 1T-NbSe2. The distribution of UHB shows $\sqrt{\text{3}}\times\sqrt{\text{3}}$ R30° superstructure with respect to CDW[132]. (e) Diagram of charge transfer insulator in monolayer 1T-NbSe2[99]. (f) dI/dV spectrum of 1T-NbSe2 measured by STS[99].

    图 8  超导与CDW的关系 (a) 1T-FexTaS2的相图[167]; (b) ARPES测量的不同掺杂下1T- FexTaS2的能量分布曲线, 在Γ点有电子口袋[167]; (c) Cu0.08TiSe2的STM图像, 插图为STM图的傅里叶变换[173]; (d) STS测量的Cu0.08TiSe2中CDW区域和畴壁的dI/dV[173]; (e) 电子辐照的2H-NbSe2中温度-剩余电阻率相图[162]

    Fig. 8.  Relationship between CDW and superconductivity: (a) Phase diagram of 1T-FexTaS2[167]; (b) ARPES-measured energy distribution curves of 1T-FexTaS2 at different doping level showing an electron pocket at Γ point[167]; (c) STM topography of Cu0.08TiSe2, where the inset is the Fourier transform of STM image[173]; (d) STS-measured dI/dV spectra of CDW regions and domain walls in Cu0.08TiSe2[173]; (e) temperature-residual resistivity phase diagram of 2H-NbSe2 upon electron irradiation[162].

    图 9  (a) 2H-NbSe2中拉曼谱的CDW模式和超导模式随温度变化, 进入超导态后谱权重从CDW模式向超导模式中转移, 插图为减去8 K测量数据后的拉曼谱[213]; (b) 1T-TiSe2中STM图像的傅里叶变换[216]; (c) 图(b)中沿3个波矢方向的线截面[216]; (d) STS测量的不同磁场下RbV3Sb5中dI/dV图的傅里叶变换[223]

    Fig. 9.  (a) Changes of CDW mode and SC mode of Raman spectra with respect to temperature in 2H-NbSe2 with spectral weight transfer from CDW mode to SC mode when going into SC state, inset: Raman spectra subtracted from the data measured at 8 K[213]; (b) Fourier transform of STS-measured dI/dV map in 1T-TiSe2[216]; (c) line profiles along three wave vectors of figure (b) [216]; (d) Fourier transform of STS image in RbV3Sb5 at different magnetic field[223].

    Baidu
  • [1]

    Grüner G 2018 Density Waves in Solids (Boca Raton: CRC Press)

    [2]

    Johannes M D, Mazin I I 2008 Phys. Rev. B 77 165135Google Scholar

    [3]

    Peierls R E, Peierls R S 1955 Quantum Theory of Solids (Oxford: Oxford University Press)

    [4]

    Zhu X, Guo J, Zhang J, Plummer E W 2017 Adv. Phys. X 2 622Google Scholar

    [5]

    Woll Jr E, Kohn W 1962 Phys. Rev. 126 1693Google Scholar

    [6]

    Overhauser A 1962 Phys. Rev. 128 1437Google Scholar

    [7]

    Overhauser A 1968 Phys. Rev. 167 691Google Scholar

    [8]

    Berlinsky A 1979 Rep. Prog. Phys. 42 1243Google Scholar

    [9]

    Koizumi K, Ishizaka K, Kiss T, Okawa M, Kato R, Shin S 2013 J. Phys. Soc. Jpn. 82 025004Google Scholar

    [10]

    Mook H A, Watson C R 1976 Phys. Rev. Lett. 36 801Google Scholar

    [11]

    Coleman L B, Cohen M J, Sandman D J, Yamagishi F G, Garito A F, Heeger A J 1973 Solid State Commun. 12 1125Google Scholar

    [12]

    Chu C W, Harper J M E, Geballe T H, Greene R L 1973 Phys. Rev. Lett. 31 1491Google Scholar

    [13]

    Li P, Lv B, Fang Y, Guo W, Wu Z, Wu Y, Shen D, Nie Y, Petaccia L, Cao C, Xu Z A, Liu Y 2021 Sci. China: Phys. Mech. Astron. 64 237412Google Scholar

    [14]

    Snijders P C, Weitering H H 2010 Rev. Mod. Phys. 82 307Google Scholar

    [15]

    Grüner G 1988 Rev. Mod. Phys. 60 1129Google Scholar

    [16]

    Gor'kov L P, Grüner G 2012 Charge Density Waves in Solids (North Holland: Elsevier)

    [17]

    Xu Z, Yang H, Song X, Chen Y, Yang H, Liu M, Zhang Q, Liu L, Wang Y 2021 Nanotechnology 32 492001Google Scholar

    [18]

    Wilson J A, Di Salvo F J, Mahajan S 1975 Adv. Phys. 24 117Google Scholar

    [19]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L, McEuen P L 1999 Nature 397 598Google Scholar

    [20]

    Deshpande V V, Bockrath M 2008 Nat. Phys. 4 314Google Scholar

    [21]

    Oncel N, van Houselt A, Huijben J, Hallbäck A S, Gurlu O, Zandvliet H J, Poelsema B 2005 Phys. Rev. Lett. 95 116801Google Scholar

    [22]

    van Houselt A, Oncel N, Poelsema B, Zandvliet H J 2006 Nano Lett. 6 1439Google Scholar

    [23]

    Guo J, Lee G, Plummer E W 2005 Phys. Rev. Lett. 95 046102Google Scholar

    [24]

    Okamoto H, Matsuzaki H, Wakabayashi T, Takahashi Y, Hasegawa T 2007 Phys. Rev. Lett. 98 037401Google Scholar

    [25]

    Su W P, Schrieffer J, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [26]

    Ye X S, Liu Y J, Zeng X H, Wu G 2015 Sci. Rep. 5 17358Google Scholar

    [27]

    Yoon H, Lee J, Park S, Lyo I W, Kang M H 2005 Phys. Rev. B 72 155443Google Scholar

    [28]

    Ahn J, Yeom H, Yoon H, Lyo I W 2003 Phys. Rev. Lett. 91 196403Google Scholar

    [29]

    Yeom H W, Ahn J R, Yoon H S, Lyo I W, Jeong H, Jeong S 2005 Phys. Rev. B 72 035323Google Scholar

    [30]

    Park S J, Yeom H W, Min S H, Park D H, Lyo I W 2004 Phys. Rev. Lett. 93 106402Google Scholar

    [31]

    Kumpf C, Bunk O, Zeysing J, Su Y, Nielsen M, Johnson R, Feidenhans R, Bechgaard K 2000 Phys. Rev. Lett. 85 4916Google Scholar

    [32]

    González C, Ortega J, Flores F 2005 New J. Phys. 7 100Google Scholar

    [33]

    Ahn J, Byun J, Kim J, Yeom H 2007 Phys. Rev. B 75 033313Google Scholar

    [34]

    Yeom H W, Takeda S, Rotenberg E, Matsuda I, Horikoshi K, Schaefer J, Lee C, Kevan S, Ohta T, Nagao T 1999 Phys. Rev. Lett. 82 4898Google Scholar

    [35]

    Tanikawa T, Matsuda I, Kanagawa T, Hasegawa S 2004 Phys. Rev. Lett. 93 016801Google Scholar

    [36]

    González C, Flores F, Ortega J 2006 Phys. Rev. Lett. 96 136101Google Scholar

    [37]

    González C, Guo J, Ortega J, Flores F, Weitering H H 2009 Phys. Rev. Lett. 102 115501Google Scholar

    [38]

    Zeng C, Kent P R C, Kim T H, Li A P, Weitering H H 2008 Nat. Mater. 7 539Google Scholar

    [39]

    Park S J, Yeom H W, Ahn J R, Lyo I W 2005 Phys. Rev. Lett. 95 126102Google Scholar

    [40]

    Chiang C K, Fincher Jr C, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098Google Scholar

    [41]

    Cohen M J, Heeger A 1977 Phys. Rev. B 16 688Google Scholar

    [42]

    Ong N, Monceau P 1977 Phys. Rev. B 16 3443Google Scholar

    [43]

    Zettl A, Grüner G, Thompson A 1982 Phys. Rev. B 26 5760Google Scholar

    [44]

    Lopes E, Matos M, Henriques R, Almeida M, Dumas J 1995 Synth. Met. 70 1267Google Scholar

    [45]

    McCarten J, DiCarlo D, Maher M, Adelman T, Thorne R 1992 Phys. Rev. B 46 4456Google Scholar

    [46]

    Grüner G, Tippie L, Sanny J, Clark W, Ong N 1980 Phys. Rev. Lett. 45 935Google Scholar

    [47]

    Wu W Y, Mihaly L, Mozurkewich G, Gruner G 1986 Phys. Rev. B 33 2444Google Scholar

    [48]

    Zhang H, Choi J H, Xu Y, Wang X, Zhai X, Wang B, Zeng C, Cho J H, Zhang Z, Hou J G 2011 Phys. Rev. Lett. 106 026801Google Scholar

    [49]

    Cheon S, Kim T H, Lee S H, Yeom H W 2015 Science 350 182Google Scholar

    [50]

    Kim T H, Cheon S, Yeom H W 2017 Nat. Phys. 13 444Google Scholar

    [51]

    Park J W, Do E, Shin J S, Song S K, Stetsovych O, Jelinek P, Yeom H W 2022 Nat. Nanotechnol. 17 244Google Scholar

    [52]

    Lee G, Shim H, Hyun J M, Kim H 2019 Phys. Rev. Lett. 122 016102Google Scholar

    [53]

    Lee G, Yu S Y, Kim H, Koo J Y 2004 Phys. Rev. B 70 121304Google Scholar

    [54]

    Oh D M, Wippermann S, Schmidt W G, Yeom H W 2014 Phys. Rev. B 90 155432Google Scholar

    [55]

    Terada Y, Yoshida S, Okubo A, Kanazawa K, Xu M, Takeuchi O, Shigekawa H 2008 Nano Lett. 8 3577Google Scholar

    [56]

    Lee S, Ahn J, Kim N, Min J, Hwang C, Chung J, Yeom H, Ryjkov S V, Hasegawa S 2002 Phys. Rev. Lett. 88 196401Google Scholar

    [57]

    Morikawa H, Hwang C, Yeom H W 2010 Phys. Rev. B 81 075401Google Scholar

    [58]

    Zhang H, Ming F, Kim H J, Zhu H, Zhang Q, Weitering H H, Xiao X, Zeng C G, Cho J H, Zhang Z 2014 Phys. Rev. Lett. 113 196802Google Scholar

    [59]

    Kim S W, Kim H J, Ming F, Jia Y, Zeng C G, Cho J H, Zhang Z 2015 Phys. Rev. B 91 174434Google Scholar

    [60]

    Song S K, Yeom H W 2021 Phys. Rev. B 104 035420Google Scholar

    [61]

    Batzill M 2018 J. Phys. Condens. Matter 30 493001Google Scholar

    [62]

    Xia Y, Zhang J, Jin Y, Ho W, Xu H, Xie M H 2020 ACS Nano 14 10716Google Scholar

    [63]

    He X, Zhang L, Chua R, Wong P K J, Arramel A, Feng Y P, Wang S J, Chi D, Yang M, Huang Y L, Wee A T S 2019 Nat. Commun. 10 2847Google Scholar

    [64]

    Liu H, Jiao L, Yang F, Cai Y, Wu X, Ho W, Gao C, Jia J, Wang N, Fan H, Yao W, Xie M H 2014 Phys. Rev. Lett. 113 066105Google Scholar

    [65]

    Barja S, Wickenburg S, Liu Z F, Zhang Y, Ryu H, Ugeda M M, Hussain Z, Shen Z X, Mo S K, Wong E 2016 Nat. Phys. 12 751Google Scholar

    [66]

    Ma Y, Diaz H C, Avila J, Chen C, Kalappattil V, Das R, Phan M H, Čadež T, Carmelo J M P, Asensio M C, Batzill M 2017 Nat. Commun. 8 14231Google Scholar

    [67]

    Krishnamurthi S, Brocks G 2020 Phys. Rev. B 102 161106Google Scholar

    [68]

    Lasek K, Li J, Kolekar S, Coelho P M, Zhang M, Wang Z, Batzill M 2021 Surf. Sci. Rep. 76 100523Google Scholar

    [69]

    Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X, Hu J 2021 arXiv: 2109.10809 [cond-mat.supr-con]

    [70]

    Wise W, Boyer M, Chatterjee K, Kondo T, Takeuchi T, Ikuta H, Wang Y, Hudson E 2008 Nat. Phys. 4 696Google Scholar

    [71]

    Duvjir G, Choi B K, Jang I, Ulstrup S, Kang S, Thi Ly T, Kim S, Choi Y H, Jozwiak C, Bostwick A 2018 Nano Lett. 18 5432Google Scholar

    [72]

    Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V, Chiang T C 2018 Phys. Rev. Lett. 121 196402Google Scholar

    [73]

    Brouet V, Yang W L, Zhou X J, Hussain Z, Ru N, Shin K Y, Fisher I R, Shen Z X 2004 Phys. Rev. Lett. 93 126405Google Scholar

    [74]

    Straub T, Finteis T, Claessen R, Steiner P, Hüfner S, Blaha P, Oglesby C, Bucher E 1999 Phys. Rev. Lett. 82 4504Google Scholar

    [75]

    Borisenko S, Kordyuk A, Zabolotnyy V, Inosov D, Evtushinsky D, Büchner B, Yaresko A, Varykhalov A, Follath R, Eberhardt W 2009 Phys. Rev. Lett. 102 166402Google Scholar

    [76]

    Naito M, Tanaka S 1982 J. Phys. Soc. Jpn. 51 219Google Scholar

    [77]

    Johannes M, Mazin I, Howells C 2006 Phys. Rev. B 73 205102Google Scholar

    [78]

    Arguello C J, Rosenthal E P, Andrade E F, Jin W, Yeh P C, Zaki N, Jia S, Cava R J, Fernandes R M, Millis A J, Valla T, Osgood R M, Pasupathy A N 2015 Phys. Rev. Lett. 114 037001Google Scholar

    [79]

    Rice T, Scott G 1975 Phys. Rev. Lett. 35 120Google Scholar

    [80]

    Liu Z, Zhao N, Yin Q, Gong C, Tu Z, Li M, Song W, Liu Z, Shen D, Huang Y, Liu K, Lei H, Wang S 2021 Phys. Rev. X 11 041010Google Scholar

    [81]

    Zhou X, Li Y, Fan X, Hao J, Dai Y, Wang Z, Yao Y, Wen H H 2021 Phys. Rev. B 104 L041101Google Scholar

    [82]

    Zhu X, Cao Y, Zhang J, Plummer E W, Guo J 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2367Google Scholar

    [83]

    Valla T, Fedorov A V, Johnson P D, Glans P A, McGuinness C, Smith K E, Andrei E Y, Berger H 2004 Phys. Rev. Lett. 92 086401Google Scholar

    [84]

    Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami T, Said A, Reznik D 2011 Phys. Rev. Lett. 107 107403Google Scholar

    [85]

    Weber F, Hott R, Heid R, Bohnen K P, Rosenkranz S, Castellan J P, Osborn R, Said A, Leu B, Reznik D 2013 Phys. Rev. B 87 245111Google Scholar

    [86]

    Arguello C J, Chockalingam S P, Rosenthal E P, Zhao L, Gutiérrez C, Kang J, Chung W, Fernandes R M, Jia S, Millis A J 2014 Phys. Rev. B 89 235115Google Scholar

    [87]

    Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 12 92Google Scholar

    [88]

    Di Salvo F J, Moncton D, Waszczak J 1976 Phys. Rev. B 14 4321Google Scholar

    [89]

    Bachrach R, Skibowski M, Brown F C 1976 Phys. Rev. Lett. 37 40Google Scholar

    [90]

    van Wezel J, Nahai-Williamson P, Saxena S S 2010 Phys. Rev. B 81 165109Google Scholar

    [91]

    Whangbo M H, Canadell E 1992 J. Am. Chem. Soc. 114 9587Google Scholar

    [92]

    Wegner A, Zhao J, Li J, Yang J, Anikin A, Karapetrov G, Esfarjani K, Louca D, Chatterjee U 2020 Phys. Rev. B 101 195145Google Scholar

    [93]

    Li G, Hu W, Qian D, Hsieh D, Hasan M, Morosan E, Cava R J, Wang N 2007 Phys. Rev. Lett. 99 027404Google Scholar

    [94]

    Monney C, Schwier E, Garnier M G, Mariotti N, Didiot C, Cercellier H, Marcus J, Berger H, Titov A, Beck H 2010 New J. Phys. 12 125019Google Scholar

    [95]

    Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L, Tutiš E 2008 Nat. Mater. 7 960Google Scholar

    [96]

    Rossnagel K, Smith N 2006 Phys. Rev. B 73 073106Google Scholar

    [97]

    Shao D, Xiao R, Lu W, Lv H, Li J, Zhu X, Sun Y 2016 Phys. Rev. B 94 125126Google Scholar

    [98]

    Tresca C, Calandra M 2019 2D Mater. 6 035041Google Scholar

    [99]

    Liu M, Leveillee J, Lu S, Yu J, Kim H, Tian C, Shi Y, Lai K, Zhang C, Giustino F, Shih C K 2021 Sci. Adv. 7 eabi6339Google Scholar

    [100]

    Martino E, Putzke C, König M, Moll P J W, Berger H, LeBoeuf D, Leroux M, Proust C, Akrap A, Kirmse H, Koch C, Zhang S, Wu Q, Yazyev O V, Forró L, Semeniuk K 2021 npj 2D Mater. Appl. 5 86Google Scholar

    [101]

    Ma L G, Ye C, Yu Y J, Lu X F, Niu X H, Kim S, Feng D L, Tománek D, Son Y W, Chen X H, Zhang Y B 2016 Nat. Commun. 7 10956Google Scholar

    [102]

    Cho D, Cheon S, Kim K S, Lee S H, Cho Y H, Cheong S W, Yeom H W 2016 Nat. Commun. 7 10453Google Scholar

    [103]

    Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S, Mihailovic D 2014 Science 344 177Google Scholar

    [104]

    Vaskivskyi I, Gospodaric J, Brazovskii S, Svetin D, Sutar P, Goreshnik E, Mihailovic I A, Mertelj T, Mihailovic D 2015 Sci. Adv. 1 e1500168Google Scholar

    [105]

    Gerasimenko Y A, Karpov P, Vaskivskyi I, Brazovskii S, Mihailovic D 2019 npj Quantum Mater. 4 32Google Scholar

    [106]

    Hollander M J, Liu Y, Lu W J, Li L J, Sun Y P, Robinson J A, Datta S 2015 Nano Lett. 15 1861Google Scholar

    [107]

    Tsen A W, Hovden R, Wang D, Kim Y D, Okamoto J, Spoth K A, Liu Y, Lu W, Sun Y, Hone J C 2015 Proc. Natl. Acad. Sci. U. S. A. 112 15054Google Scholar

    [108]

    Shen S, Yuan X, Wen C, Gao J, Luo X, Lu X, Sun Y P, Yan S C 2020 Phys. Rev. Mater. 4 064007Google Scholar

    [109]

    Shen S, Shao B, Wen C, Yuan X, Gao J, Nie Z, Luo X, Huang B, Sun Y, Meng S, Yan S C 2020 Nano Lett. 20 8854Google Scholar

    [110]

    Wang X, Liu H, Wu J, Lin J, He W, Wang H, Shi X, Suenaga K, Xie L 2018 Adv. Mater. 30 1800074Google Scholar

    [111]

    Yu Y, Yang F, Lu X F, Yan Y J, Cho Y H, Ma L, Niu X, Kim S, Son Y W, Feng D 2015 Nat. Nanotechnol. 10 270Google Scholar

    [112]

    Yoshida M, Suzuki R, Zhang Y, Nakano M, Iwasa Y 2015 Sci. Adv. 1 e1500606Google Scholar

    [113]

    Sakabe D, Liu Z, Suenaga K, Nakatsugawa K, Tanda S 2017 npj Quantum Mater. 2 22Google Scholar

    [114]

    Lin H, Huang W, Zhao K, Qiao S, Liu Z, Wu J, Chen X, Ji S H 2020 Nano Res. 13 133Google Scholar

    [115]

    Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V, Chiang T C 2015 Nat. Commun. 6 8943Google Scholar

    [116]

    Chen P, Chan Y H, Wong M H, Fang X Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V, Chiang T C 2016 Nano Lett. 16 6331Google Scholar

    [117]

    Sugawara K, Nakata Y, Shimizu R, Han P, Hitosugi T, Sato T, Takahashi T 2016 ACS nano 10 1341Google Scholar

    [118]

    Kolekar S, Bonilla M, Ma Y, Diaz H C, Batzill M 2017 2D Mater. 5 015006Google Scholar

    [119]

    Guster B, Canadell E, Pruneda M, Ordejón P 2018 2D Mater. 5 025024Google Scholar

    [120]

    Chen Y, Wu L, Xu H, Cong C, Li S, Feng S, Zhang H, Zou C, Shang J, Yang S A, Loh K P, Huang W, Yu T 2020 Adv. Mater. 32 2003746Google Scholar

    [121]

    Oh E, Gye G, Yeom H W 2020 Phys. Rev. Lett. 125 036804Google Scholar

    [122]

    Xie X, Lin D, Zhu L, Li Q, Zong J, Chen W, Meng Q, Tian Q, Li S C, Xi X 2021 Chin. Phys. Lett. 38 107101Google Scholar

    [123]

    Mott N 2004 Metal-Insulator Transitions (CRC Press)

    [124]

    Wang Y D, Yao W L, Xin Z M, Han T T, Wang Z G, Chen L, Cai C, Li Y, Zhang Y 2020 Nat. Commun. 11 4215Google Scholar

    [125]

    Fazekas P, Tosatti E 1979 Philos. Mag. B 39 229Google Scholar

    [126]

    Wen C, Gao J, Xie Y, Zhang Q, Kong P, Wang J, Jiang Y, Luo X, Li J, Lu W, Sun Y P, Yan S C 2021 Phys. Rev. Lett. 126 256402Google Scholar

    [127]

    Stahl Q, Kusch M, Heinsch F, Garbarino G, Kretzschmar N, Hanff K, Rossnagel K, Geck J, Ritschel T 2020 Nat. Commun. 11 1247Google Scholar

    [128]

    Chen Y, Ruan W, Wu M, Tang S, Ryu H, Tsai H Z, Lee R L, Kahn S, Liou F, Jia C 2020 Nat. Phys. 16 218Google Scholar

    [129]

    Ramšak N, van Midden H, Prodan A, Marinković V, Boswell F, Bennett J 1999 Phys. Rev. B 60 4513Google Scholar

    [130]

    Kadijk F, Jellinek F 1971 J. Less-Common Met. 23 437Google Scholar

    [131]

    Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8 e321Google Scholar

    [132]

    Liu L W, Yang H, Huang Y T, Song X, Zhang Q Z, Huang Z P, Hou Y H, Chen Y Y, Xu Z Q, Zhang T, Wu X, Sun J T, Huang Y, Zheng F W, Li X B, Yao Y G, Gao H J, Wang Y L 2021 Nat. Commun. 12 1978Google Scholar

    [133]

    Zhang Q, Hou Y, Zhang T, Xu Z, Huang Z, Yuan P, Jia L, Yang H, Huang Y, Ji W, Qiao J S, Wu X, Wang Y L 2021 ACS Nano 15 16589Google Scholar

    [134]

    Liu Z Y, Qiao S, Huang B, Tang Q Y, Ling Z H, Zhang W H, Xia H N, Liao X, Shi H, Mao W H, Zhu G L, Lü J T, Fu Y S 2021 Nano Lett. 21 7005Google Scholar

    [135]

    Pouget J, Ravy S 1997 Synth. Met. 85 1523Google Scholar

    [136]

    Kobayashi N, Ogata M, Yonemitsu K 1998 J. Phys. Soc. Jpn. 67 1098Google Scholar

    [137]

    Jérome D, Mazaud A, Ribault M, Bechgaard K 1980 J. Phys. , Lett. 41 95Google Scholar

    [138]

    Vuletić T, Auban-Senzier P, Pasquier C, Tomić S, Jérome D, Heritier M, Bechgaard K 2002 Eur. Phys. J. B 25 319Google Scholar

    [139]

    Kang N, Salameh B, Auban-Senzier P, Jérome D, Pasquier C, Brazovskii S 2010 Phys. Rev. B 81 100509Google Scholar

    [140]

    Jang H, Lee W S, Song S, Nojiri H, Matsuzawa S, Yasumura H, Huang H, Liu Y J, Porras J, Minola M 2018 Phys. Rev. B 97 224513Google Scholar

    [141]

    Wen J J, Huang H, Lee S J, Jang H, Knight J, Lee Y S, Fujita M, Suzuki K M, Asano S, Kivelson S A, Kao C C, Lee J S 2019 Nat. Commun. 10 3269Google Scholar

    [142]

    Enayat M, Sun Z, Singh U R, Aluru R, Schmaus S, Yaresko A, Liu Y, Lin C, Tsurkan V, Loidl A 2014 Science 345 653Google Scholar

    [143]

    Zabel H 1999 J. Phys. Condens. Matter 11 9303Google Scholar

    [144]

    Gibbs D, Mohanty K, Bohr J 1988 Phys. Rev. B 37 562Google Scholar

    [145]

    Young C, Sokoloff J 1974 J. Phys. F:Met. Phys. 4 1304Google Scholar

    [146]

    Hsu P J, Mauerer T, Wu W, Bode M 2013 Phys. Rev. B 87 115437Google Scholar

    [147]

    Hu Y, Zhang T, Zhao D, Chen C, Ding S, Yang W, Wang X, Li C, Wang H, Feng D L, Zhang T 2022 Nat. Commun. 13 445Google Scholar

    [148]

    van Efferen C, Berges J, Hall J, van Loon E, Kraus S, Schobert A, Wekking T, Huttmann F, Plaar E, Rothenbach N, Ollefs K, Arruda L M, Brookes N, Schönhoff G, Kummer K, Wende H, Wehling T, Michely T 2021 Nat. Commun. 12 6837Google Scholar

    [149]

    Proust C, Taillefer L 2019 Annu. Rev. Condens. Matter Phys. 10 409Google Scholar

    [150]

    Mukhopadhyay S, Sharma R, Kim C K, Edkins S D, Hamidian M H, Eisaki H, Uchida S I, Kim E A, Lawler M J, Mackenzie A P 2019 Proc. Natl. Acad. Sci. USA 116 13249Google Scholar

    [151]

    Loret B, Auvray N, Gallais Y, Cazayous M, Forget A, Colson D, Julien M H, Paul I, Civelli M, Sacuto A 2019 Nat. Phys. 15 771Google Scholar

    [152]

    Briggs A, Monceau P, Nunez-Regueiro M, Peyrard J, Ribault M, Richard J 1980 J. Phys. C:Solid State Phys. 13 2117Google Scholar

    [153]

    Núñez-Regueiro M, Mignot J M, Jaime M, Castello D, Monceau P 1993 Synth. Met. 56 2653Google Scholar

    [154]

    Liu Z Y, Li J, Zhang J F, Li J, Yang P T, Zhang S, Chen G F, Uwatoko Y, Yang H X, Sui Y, Liu K, Cheng J G 2021 npj Quantum Mater. 6 90Google Scholar

    [155]

    Berthier C, Molinié P, Jérome D 1976 Solid State Commun. 18 1393Google Scholar

    [156]

    Kiss T, Yokoya T, Chainani A, Shin S, Hanaguri T, Nohara M, Takagi H 2007 Nat. Phys. 3 720Google Scholar

    [157]

    Zhou K, Deng J, Guo L, Guo J 2020 Chin. Phys. Lett. 37 097402Google Scholar

    [158]

    Morris R 1975 Phys. Rev. Lett. 34 1164Google Scholar

    [159]

    Chatterjee U, Zhao J, Iavarone M, Di Capua R, Castellan J P, Karapetrov G, Malliakas C D, Kanatzidis M G, Claus H, Ruff J P C, Weber F, van Wezel J, Campuzano J C, Osborn R, Randeria M, Trivedi N, Norman M R, Rosenkranz S 2015 Nat. Commun. 6 6313Google Scholar

    [160]

    Hauser J, Robbins M, DiSalvo F 1973 Phys. Rev. B 8 1038Google Scholar

    [161]

    Yan D, Lin Y, Wang G, Zhu Z, Wang S, Shi L, He Y, Li M R, Zheng H, Ma J, Jia J F, Wang Y H, Luo H X 2019 Supercond. Sci. Technol. 32 085008Google Scholar

    [162]

    Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Guss J, Gartin P B, Wilde J M, Kreyssig A, McQueeney R J, Goldman A I, Mishra V, Hirschfeld P J, Prozorov R 2018 Nat. Commun. 9 2796Google Scholar

    [163]

    Scholz G, Singh O, Frindt R, Curzon A 1982 Solid State Commun. 44 1455Google Scholar

    [164]

    Nagata S, Aochi T, Abe T, Ebisu S, Hagino T, Seki Y, Tsutsumi K 1992 J. Phys. Chem. Solids 53 1259Google Scholar

    [165]

    Wagner K, Morosan E, Hor Y, Tao J, Zhu Y, Sanders T, McQueen T, Zandbergen H, Williams A, West D 2008 Phys. Rev. B 78 104520Google Scholar

    [166]

    Xu S, Gao J, Liu Z, Chen K, Yang P, Tian S, Gong C, Sun J, Xue M, Gouchi J, Luo X, Sun Y P, Uwatoko Y, Lei H C, Wang B, Cheng J G 2021 Phys. Rev. B 103 224509Google Scholar

    [167]

    Ang R, Tanaka Y, Ieki E, Nakayama K, Sato T, Li L, Lu W, Sun Y P, Takahashi T 2012 Phys. Rev. Lett. 109 176403Google Scholar

    [168]

    Li L, Lu W, Zhu X, Ling L, Qu Z, Sun Y P 2012 EPL 97 67005Google Scholar

    [169]

    Liu Y, Ang R, Lu W, Song W, Li L, Sun Y P 2013 Appl. Phys. Lett. 102 192602Google Scholar

    [170]

    Morosan E, Zandbergen H W, Dennis B, Bos J, Onose Y, Klimczuk T, Ramirez A, Ong N, Cava R J 2006 Nat. Phys. 2 544Google Scholar

    [171]

    Qian D, Hsieh D, Wray L, Morosan E, Wang N, Xia Y, Cava R, Hasan M 2007 Phys. Rev. Lett. 98 117007Google Scholar

    [172]

    Kogar A, de La Pena G A, Lee S, Fang Y, Sun S L, Lioi D B, Karapetrov G, Finkelstein K D, Ruff J P, Abbamonte P 2017 Phys. Rev. Lett. 118 027002Google Scholar

    [173]

    Yan S C, Iaia D, Morosan E, Fradkin E, Abbamonte P, Madhavan V 2017 Phys. Rev. Lett. 118 106405Google Scholar

    [174]

    Wang B S, Liu Y, Luo X, Ishigaki K, Matsubayashi K, Lu W, Sun Y, Cheng J, Uwatoko Y 2018 Phys. Rev. B 97 220504Google Scholar

    [175]

    Kusmartseva A F, Sipos B, Berger H, Forro L, Tutiš E 2009 Phys. Rev. Lett. 103 236401Google Scholar

    [176]

    Joe Y I, Chen X, Ghaemi P, Finkelstein K, de La Peña G, Gan Y, Lee J, Yuan S, Geck J, MacDougall G 2014 Nat. Phys. 10 421Google Scholar

    [177]

    Saqib H, Rahman S, Zhao Y, Cazorla C, Errandonea D, Susilo R, Zhuang Y, Huang y, Chen B, Dai N 2021 J. Phys. Chem. Lett. 12 9859Google Scholar

    [178]

    Lee S, Park T B, Kim J, Jung S G, Seong W K, Hur N, Luo Y, Kim D Y, Park T 2021 Phys. Rev. Res. 3 033097Google Scholar

    [179]

    Xu S, Yang P, Chen K, Liu Z, Cui W, Hu Q, Sun J, Ang R, Uwatoko Y, Wang B, Cheng J G 2021 Phys. Rev. B 104 134503Google Scholar

    [180]

    Xi X X, Zhao L, Wang Z, Berger H, Forró L, Shan J, Mak K F 2015 Nat. Nanotechnol. 10 765Google Scholar

    [181]

    Lian C S, Si C, Duan W H 2018 Nano Lett. 18 2924Google Scholar

    [182]

    Shi J, Chen X, Zhao L, Gong Y, Hong M, Huan Y, Zhang Z, Yang P, Li Y, Zhang Q H, Zhang Q, Gu L, Chen H J, Wang J, Deng S Z, Xu N S, Zhang Y F 2018 Adv. Mater. 30 1804616Google Scholar

    [183]

    Wu Y, He J, Liu J, Xing H, Mao Z, Liu Y 2018 Nanotechnology 30 035702Google Scholar

    [184]

    Lian C S, Heil C, Liu X, Si C, Giustino F, Duan W H 2019 J. Phys. Chem. Lett. 10 4076Google Scholar

    [185]

    Xie Y, Li Y, Bourges P, Ivanov A, Ye Z, Yin J-X, Hasan M Z, Luo A, Yao Y, Wang Z, Xu G, Dai P 2022 Phys. Rev. B 105 L140501Google Scholar

    [186]

    Luo H, Gao Q, Liu H, Gu Y, Wu D, Yi C, Jia J, Wu S, Luo X, Xu Y, Zhao L, Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z, Zhou X J 2022 Nat. Commun. 13 273Google Scholar

    [187]

    Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z, Chen X H 2021 Phys. Rev. X 11 031026Google Scholar

    [188]

    Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R, Wilson S D 2021 Phys. Rev. X 11 041030Google Scholar

    [189]

    Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, Wilson S D 2020 Phys. Rev. Lett. 125 247002Google Scholar

    [190]

    Wang Z, Wu Q, Yin Q, Gong C, Tu Z, Lin T, Liu Q, Shi L, Zhang S, Wu D 2021 Phys. Rev. B 104 165110Google Scholar

    [191]

    Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J, Chen X H 2021 Nat. Commun. 12 3645Google Scholar

    [192]

    Chen K, Wang N, Yin Q, Gu Y, Jiang K, Tu Z, Gong C, Uwatoko Y, Sun J, Lei H, Hu J P, Cheng J G 2021 Phys. Rev. Lett. 126 247001Google Scholar

    [193]

    Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, Chen X 2022 Nature 604 59Google Scholar

    [194]

    Wang N N, Chen K Y, Yin Q W, Ma Y N N, Pan B Y, Yang X, Ji X Y, Wu S L, Shan P F, Xu S X, Tu Z J, Gong C S, Liu G T, Li G, Uwatoko Y, Dong X L, Lei H C, Sun J P, Cheng J G 2021 Phys. Rev. Res. 3 043018Google Scholar

    [195]

    Qian T, Christensen M H, Hu C, Saha A, Andersen B M, Fernandes R M, Birol T, Ni N 2021 Phys. Rev. B 104 144506Google Scholar

    [196]

    Song Y, Ying T, Chen X, Han X, Wu X, Schnyder A P, Huang Y, Guo J G, Chen X L 2021 Phys. Rev. Lett. 127 237001Google Scholar

    [197]

    Berg E, Fradkin E, Kivelson S A 2009 Phys. Rev. B 79 064515Google Scholar

    [198]

    Agterberg D F, Davis J S, Edkins S D, Fradkin E, Van Harlingen D J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M, Wang Y 2020 Annu. Rev. Condens. Matter Phys. 11 231Google Scholar

    [199]

    Hamidian M, Edkins S, Joo S H, Kostin A, Eisaki H, Uchida S, Lawler M, Kim E A, Mackenzie A, Fujita K 2016 Nature 532 343Google Scholar

    [200]

    Du Z, Li H, Joo S H, Donoway E P, Lee J, Davis J S, Gu G, Johnson P D, Fujita K 2020 Nature 580 65Google Scholar

    [201]

    Edkins S D, Kostin A, Fujita K, Mackenzie A P, Eisaki H, Uchida S, Sachdev S, Lawler M J, Kim E A, Davis J S 2019 Science 364 976Google Scholar

    [202]

    Dai Z, Zhang Y H, Senthil T, Lee P A 2018 Phys. Rev. B 97 174511Google Scholar

    [203]

    Liu X, Chong Y X, Sharma R, Davis J S 2021 Science 372 1447Google Scholar

    [204]

    Chen H, Yang H, Hu B, et al. 2021 Nature 599 222Google Scholar

    [205]

    Zhou S, Wang Z 2021 arXiv: 2110.06266 [cond-mat.supr-con]

    [206]

    Uchida S, Tanabe K, Tanaka S 1978 Solid State Commun. 27 637Google Scholar

    [207]

    Ma Y C, Hou Y, Lu C, Li L, Petrovic C 2018 Phys. Rev. B 97 195117Google Scholar

    [208]

    Altvater M A, Tilak N, Rao S, Li G, Won C J, Cheong S W, Andrei E Y 2021 Nano Lett. 21 6132Google Scholar

    [209]

    Song C Y, Yuan X, Huang C, Huang S Y, Xing Q X, Wang C, Zhang C, Xie Y G, Lei Y C, Wang F J, Mu L, Zhang J S, Xiu F X, Yan H G 2021 Nat. Commun. 12 386Google Scholar

    [210]

    Shimano R, Tsuji N 2020 Annu. Rev. Condens. Matter Phys. 11 103Google Scholar

    [211]

    Sooryakumar R, Klein M 1980 Phys. Rev. Lett. 45 660Google Scholar

    [212]

    Littlewood P, Varma C 1981 Phys. Rev. Lett. 47 811Google Scholar

    [213]

    Méasson M A, Gallais Y, Cazayous M, Clair B, Rodiere P, Cario L, Sacuto A 2014 Phys. Rev. B 89 060503Google Scholar

    [214]

    Grasset R, Cea T, Gallais Y, Cazayous M, Sacuto A, Cario L, Benfatto L, Méasson M A 2018 Phys. Rev. B 97 094502Google Scholar

    [215]

    Grasset R, Gallais Y, Sacuto A, Cazayous M, Mañas-Valero S, Coronado E, Méasson M A 2019 Phys. Rev. Lett. 122 127001Google Scholar

    [216]

    Ishioka J, Liu Y, Shimatake K, Kurosawa T, Ichimura K, Toda Y, Oda M, Tanda S 2010 Phys. Rev. Lett. 105 176401Google Scholar

    [217]

    van Wezel J 2011 EPL 96 67011Google Scholar

    [218]

    Peng Y Y, Guo X, Xiao Q, Li Q, Strempfer J, Choi Y, Yan D, Luo H, Huang Y, Jia S, Janson O, Abbamonte P, van den Brink J, van Wezel J 2021 arXiv: 2105.13195 [cond-mat.str-el]

    [219]

    Xu S Y, Ma Q, Gao Y, Kogar A, Zong A, Mier Valdivia A M, Dinh T H, Huang S M, Singh B, Hsu C H, Chang T R, Ruff J P C, Watanabe K, Taniguchi T, Lin H, Karapetrov G, Xiao D, Jarillo-Herrero P, Gedik N 2020 Nature 578 545Google Scholar

    [220]

    Gao J, Zhang W, Si J, Luo X, Yan J, Jiang Z, Wang W, Lv H, Tong P, Song W, Zhu X B, Lu W J, Yin Y, Sun Y P 2021 Appl. Phys. Lett. 118 213105Google Scholar

    [221]

    Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X 2021 Nat. Mater. 20 1353Google Scholar

    [222]

    Wang Z, Jiang Y X, Yin J X, et al. 2021 Phys. Rev. B 104 075148Google Scholar

    [223]

    Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H, Shi Y, Yin Q, Lei H, Zhang S S 2021 Phys. Rev. B 104 035131Google Scholar

    [224]

    Poh S M, Tan S J, Zhao X, Chen Z, Abdelwahab I, Fu D, Xu H, Bao Y, Zhou W, Loh K P 2017 Adv. Mater. 29 1605641Google Scholar

    [225]

    Feng H, Xu Z, Zhuang J, Wang L, Liu Y, Xu X, Song L, Hao W, Du Y 2019 Adv. Funct. Mater. 29 1900367Google Scholar

    [226]

    Zhang Q, Huang Z, Hou Y, Yuan P, Xu Z, Yang H, Song X, Chen Y, Yang H, Zhang T 2021 J. Phys. Chem. Lett. 12 3545Google Scholar

    [227]

    Mraz A, Vaskivskyi I, Svetin D, Chernolevska Y, Mihailovic D 2021 Inf. MIDEM 51 167Google Scholar

    [228]

    Liu G, Debnath B, Pope T R, Salguero T T, Lake R K, Balandin A A 2016 Nat. Nanotechnol. 11 845Google Scholar

    [229]

    Pásztor Á, Scarfato A, Spera M, Flicker F, Barreteau C, Giannini E, Wezel J V, Renner C 2021 Nat. Commun. 12 6037Google Scholar

    [230]

    Chiu W C, Mardanya S, Markiewicz R, Nieminen J, Singh B, Hakioglu T, Agarwal A, Chang T R, Lin H, Bansil A 2021 arXiv:2104.14634 [cond-mat.mtrl-sci]

  • [1] 李永恺, 刘锦锦, 张鑫, 朱鹏, 杨柳, 张钰琪, 吴黄宇, 王秩伟. Kagome超导体AV3Sb5 (A = K, Rb, Cs)的掺杂效应.  , 2024, 73(6): 067401. doi: 10.7498/aps.73.20231954
    [2] 殷嘉鑫, 王强华. 超导能隙振荡: 到底来自配对密度波还是拆对散射?.  , 2024, 73(15): 157401. doi: 10.7498/aps.73.20240807
    [3] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究.  , 2024, 73(19): 197401. doi: 10.7498/aps.73.20240983
    [4] 赵宗阳, 李铭, 周涛. 石墨烯类超导体的单磁性杂质效应.  , 2023, 72(20): 207401. doi: 10.7498/aps.72.20230830
    [5] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控.  , 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [6] 奉熙林, 蒋坤, 胡江平. 钒基笼目超导体.  , 2022, 71(11): 118103. doi: 10.7498/aps.71.20220891
    [7] 季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇. 从“魔角”石墨烯到摩尔超晶格量子模拟器.  , 2021, 70(11): 118101. doi: 10.7498/aps.70.20210476
    [8] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器.  , 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [9] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化.  , 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [10] 史良马, 张世军, 朱仁义. 双能隙介观超导体的涡旋结构模拟.  , 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [11] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究.  , 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [12] 杨鹏飞, 白晋涛, 杨小鹏. 有限厚无限大平板超导体模型场分布的严格解.  , 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [13] 杨鹏飞, 陈文学. 超导体界面层的电场电荷分布及起源.  , 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [14] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图.  , 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [15] 李 勇, 闻 平, 刘振兴, 景秀年, 王万录, 白海洋. 块体金属玻璃Zr46.75Ti8.25Cu7.5Ni10Be27.5的超导与负电阻温度系数.  , 2004, 53(3): 844-849. doi: 10.7498/aps.53.844
    [16] 王俊峰, 熊 锐, 余 恒, 李 慧, 汤五丰, 余祖新, 石 兢, 田德诚, 田明亮, 张裕恒. 准二维电荷密度波导体钾紫青铜KxMo6O17单晶样品的制备.  , 2004, 53(3): 895-899. doi: 10.7498/aps.53.895
    [17] 冯天, 王楠林, 陈兆甲, 田明亮, 张裕恒. 电荷密度波材料K0.3MoO3及W掺杂样品的红外光学响应的研究.  , 2002, 51(9): 2113-2116. doi: 10.7498/aps.51.2113
    [18] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声.  , 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [19] 田明亮, 石 兢, 李世燕, 曹 强, 乐 松, 张裕恒. 准二维电荷密度波导体磷酸钨青铜(PO2)4(WO3)2 m(m=6)的磁电阻研究.  , 2000, 49(9): 1892-1896. doi: 10.7498/aps.49.1892
    [20] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理.  , 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
计量
  • 文章访问数:  20502
  • PDF下载量:  2316
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-08
  • 修回日期:  2022-02-12
  • 上网日期:  2022-02-28
  • 刊出日期:  2022-06-20

/

返回文章
返回
Baidu
map