搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究

刘晨曦 庞国旺 潘多桥 史蕾倩 张丽丽 雷博程 赵旭才 黄以能

引用本文:
Citation:

电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究

刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能

First-principles study of influence of electric field on electronic structure and optical properties of GaN/g-C3N4 heterojunction

Liu Chen-Xi, Pang Guo-Wang, Pan Duo-Qiao, Shi Lei-Qian, Zhang Li-Li, Lei Bo-Cheng, Zhao Xu-Cai, Huang Yi-Neng
PDF
HTML
导出引用
  • 采用基于密度泛函理论的第一性原理平面波超软赝势方法研究了GaN/g-C3N4异质结的稳定性、电子结构、光学性质及功函数, 同时考虑了电场效应. 结果表明: GaN/g-C3N4范德瓦耳斯异质结的晶格失配率(0.9%)和晶格失配能极低(–1.230 meV/Å2, 1 Å = 0.1 nm), 说明该异质结稳定性很好, 且该异质结在很大程度上保留了GaN和g-C3N4的基本电子性质, 可作为直接带隙半导体材料. 同时, GaN/g-C3N4异质结在界面处形成了从GaN指向g-C3N4的内建电场, 使得光生电子-空穴对可以有效分离, 这有利于提高体系的光催化能力. 进一步分析可知, 外加电场使GaN/g-C3N4异质结的禁带宽度有着不同程度的减小, 使得电子从价带跃迁至导带更加容易, 有利于提高体系的光催化活性; 此外, 当外加电场高于0.3 V/Å以及低于–0.4 V/Å时, 异质结的能带排列由I型向II型过渡, 更好地实现光生电子-空穴对的分离, 进一步提高了体系的光催化活性. 因此, 本文提出的构建异质结及施加外电场是提高体系光催化活性的有效手段.
    In this paper, the stability, electronic structure, optical properties, and work function of GaN/g-C3N4 heterojunction are studied by using the first-principles plane wave ultra-soft pseudopotential method based on density functional theory. The electric field effect is also considered. The results show that the total energy for each of the three stacking modes changes little for using the two different dispersion correction methods, i.e. Tkatchenko-Scheffler and Grimme, and the total energy of mode II is the lowest, indicating that the structure of mode II is the most stable. The lattice mismatch ratio and lattice mismatch energy of GaN/g-C3N4 van der Waals heterojunction are very low, indicating that the heterojunction has good stability. The heterojunction retains the basic electronic properties of GaN and g-C3N4 to a great extent and can be used as a direct bandgap semiconductor material. It can be known from the work function and differential charge diagram that the charge on the heterojunction interface is transferred from GaN to g-C3N4, and a built-in electric field orientating g-C3N4 from GaN is formed at the interface. The built-in electric field of the heterojunction can effectively separate the photogenerated electron-hole pairs, which is conducive to improving the photocatalytic capability of the system. Further analysis shows that the applied electric field reduces the bandgap of GaN/g-C3N4 heterostructure to varying degrees. It makes it easier for electrons to transit from valence band to conduction band, which is conducive to improving the photocatalytic activity of the system. In addition, when the applied electric field is –0.6 V/Å and 0.5 V/Å separately, the semiconductor metal phase transition occurs in the heterojunction. When the applied electric field is higher than 0.3 V/Å and lower than –0.4 V/Å, in the energy band arrangement of the heterojunction there occurs the transition from type I to type II. This can better realize the separation of photogenerated electron-hole pairs and further improve the photocatalytic capactivity of the system. Therefore, the construction of heterojunction and application of external electric field proposed in this work constitute an effective means to improve the photocatalytic activity of the system.
      通信作者: 张丽丽, suyi2046@sina.com ; 雷博程, lbc0428@sina.com ; 赵旭才, zxc85619876@sina.com
    • 基金项目: 新疆维吾尔自治区重点实验室开放课题(批准号: 2021D04015)、新疆维吾尔自治区高校科技计划(批准号: XJEDU2021Y044)、伊犁师范大学博士启动基金(批准号: 2021YSBS009)和新疆维吾尔自治区研究生创新项目(批准号: XJ2021G323)资助的课题
      Corresponding author: Zhang Li-Li, suyi2046@sina.com ; Lei Bo-Cheng, lbc0428@sina.com ; Zhao Xu-Cai, zxc85619876@sina.com
    • Funds: Project supported by the Open Project of Key Laboratory of Xinjiang, China (Grant No. 2021D04015), the Xinjiang Research Projects for Colleges and Universities, China (Grant No. XJEDU2021Y044), the Yili Normal University Start-up Fund for the Doctor, China (Grant No. 2021YSBS009), and the Xinjiang Innovative Projects for Graduate Students, China (Grant No. XJ2021G323).
    [1]

    Cao S W, Yu J G 2014 Phys. Chem. Lett. 5 2101Google Scholar

    [2]

    Mao N, Gao X M, Zhang C, Shu C, Ma W Y, Wang F, Jiang J X 2019 Dalton. T. 48 14864Google Scholar

    [3]

    Antil B, Kumar L, Ranjan R, Shenoy S, Tarafder K, Gopinath C S, Deka S 2021 ACS Appl. Energ. Mater. 4 3118Google Scholar

    [4]

    Fu J W, Xu Q L, Low J X, Jiang C J, Yu J G 2019 A Appl. Catal. B-Environ. 243 556Google Scholar

    [5]

    Song Y H, She X J, Yi J J, Mo Z, Liu L, Xu H, Li H M 2017 Phys. Status. Solidi. A 214 1600704Google Scholar

    [6]

    Na S, Seo S, Lee H 2020 Catalysts 10 679Google Scholar

    [7]

    Ali S M, Khan M A M, ALKhuraiji T S 2020 J. Mater. Sci-Mater. El. 31 14901Google Scholar

    [8]

    Eisa M H 2019 Results Phys. 13 102330Google Scholar

    [9]

    Tong T, Zhu B C, Jiang C J, Cheng B, Yu J G 2018 Appl. Surf. Sci. 433 1175Google Scholar

    [10]

    Zhu B C, Zhang L Y, Cheng B, Yu Y, Yu J G 2021 Chin. J. Catal. 42 115Google Scholar

    [11]

    Li H H, Wu Y, Li L, Gong Y Y, Niu L Y, Liu X J, Wang T, Sun C Q, Li C 2018 Appl. Surf. Sci. 457 735Google Scholar

    [12]

    Liu X L, Ma R, Zhuang L, Hu B W, Chen J R, Liu X Y, Wang X K 2021 Crit. Rev. Env. Sci. Tec. 51 751Google Scholar

    [13]

    Li S J, Li Y Y, Shao L X, Wang C D 2021 ChemistrySelect 6 181Google Scholar

    [14]

    Ariyanti D, Mukhtar S, Ahmed N, Liu Z, Dong J, Gao W 2020 Int. J. Mod. Phys. B 34 2040067Google Scholar

    [15]

    Li J Y, Liu B K, Han X L, Liu B B, Jiang J X, Liu S R, Zhang J T, Shi H Z 2021 Sep. Purif. Technol. 261 118306Google Scholar

    [16]

    Wang G R, Jin Z L 2019 Chemistry Select 4 3602Google Scholar

    [17]

    Xu Q L, Zhu B C, Jiang C J, Cheng B, Yu J G 2018 Solar RRL 2 1800006Google Scholar

    [18]

    Zhang M, Liu X Z, Zeng X, Wang M F, Shen J Y, Liu R Y 2020 Chem. Phy. Lett. X 7 100049Google Scholar

    [19]

    Ye C Y, Wang R, Wang H Y, Jiang F B 2020 BMC Chemistry 14 65Google Scholar

    [20]

    Al-Zaqri N, Ahmed M A, Alsalme A, Alharthi F, Alsyahi A, Elmahgary M G, Galal A H 2021 J. Mater. Sci-Mater. El. 32 2601Google Scholar

    [21]

    Ai C Z, Li J, Yang L, Wang Z P, Wang Z, Zeng Y M, Deng R, Lin S W, Wang C Z 2020 Chem. Sus. Chem. 13 4985Google Scholar

    [22]

    Ma X G, Chen C, Hu J S, Zheng M K, Wang H H, Dong S J, Huang C Y, Chen X B 2019 J. Alloy. Compd. 788 1Google Scholar

    [23]

    Xue Z, Zhang X Y, Qin J Q, Liu R P 2020 Appl. Surf. Sci. 510 145489Google Scholar

    [24]

    Wu F, Zhang Z B, Cheng Z P, Zhou R Z, Lin Y L, Liu Y H, Wang Y Q, Cao X H, Liu M G, Liu Y H 2021 J. Radioanal. Nucl. Ch. 329 1125Google Scholar

    [25]

    Lou P, Lee J Y 2020 ACS Appl. Mater. Inter. 12 14289Google Scholar

    [26]

    Shu H B 2020 Mat. Sci. Eng. B-Adv. 261 114672Google Scholar

    [27]

    Sivasamy R, Paredes-Gil K, Quero F 2022 Physica. E 135 114994Google Scholar

    [28]

    Wang J, Shu H B, Liang P, Wang N, Cao D, Chen X S 2019 J. Phys. Chem. C 123 3861Google Scholar

    [29]

    Li X R, Dai Y, Ma Y D, Han S H, Huang B B 2014 Phys. Chem. Chem. Phys. 16 4230Google Scholar

    [30]

    Ye J X, Liu J W, An Y K 2020 Appl. Surf. Sci. 501 144262Google Scholar

    [31]

    Bai K F, Cui Z, Li E L, Ding Y C, Zheng J S, Liu C, Zheng Y P 2020 Vacuum 180 109562Google Scholar

    [32]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Krist. Cryst. Mater. 220 567Google Scholar

    [33]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [34]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 73005Google Scholar

    [35]

    Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar

    [36]

    危阳, 马新国, 祝林, 贺华, 黄楚云 2017 66 087101Google Scholar

    Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta. Phys. Sin. 66 087101Google Scholar

    [37]

    Ma X G, Hu J S, He H, Dong S J, Huang C Y, Chen X B 2018 ACS Appl. Nano Mater. 1 5507Google Scholar

    [38]

    Liu J J 2015 J. Phys. Chem. C 119 28417Google Scholar

    [39]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta. Phys. Sin. 68 097101Google Scholar

    [40]

    Liao J M, Sa B S, Zhou J, Ahuja R, Sun Z 2014 J. Phys. Chem. C 118 17594Google Scholar

    [41]

    Ivanov A S, Miller E, Boldyrev A I, Kameoka Y, Sato T, Tanaka K 2015 J. Phys. Chem. C 119 12008Google Scholar

    [42]

    Yeoh K H, Yoon T L, Lim T L, Rusi, Ong D S 2019 Superlattice. Microst. 130 428Google Scholar

    [43]

    张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能 2019 68 017401Google Scholar

    Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X, Huang Y N 2019 Acta. Phys. Sin. 68 017401Google Scholar

    [44]

    Pham T A, Ping Y, Galli G 2017 Nat. Mater. 16 401Google Scholar

    [45]

    Liu Z R, Yu X, Li L L 2020 Chinese J. Catal. 41 534Google Scholar

  • 图 1  (a) GaN单胞俯视图; (b) g-C3N4单胞俯视图; (c) 3 × 3的单层GaN俯视图; (d) 2 × 2的单层g-C3N4俯视图; (e) GaN/g-C3N4异质结侧视图

    Fig. 1.  Top views of primitive cells of monolayer GaN (a) and g-C3N4 (b); top views of (c) monolayer GaN with 3 × 3 lateral periodicity and (d) monolayer g-C3N4 with 2 × 2 lateral periodicity; (e) side view of GaN/g-C3N4 heterojunction.

    图 2  (a) GaN/g-C3N4异质结的3种堆垛模式俯视图以及采用TS和Grimme色散修正方法获得的总能量; (b)几何优化后模式II的结合能与层间距的关系

    Fig. 2.  (a) Top view of three stacking modes of GaN/g-C3N4 heterojunction and total energy obtained by TS and Grimme dispersion correction method; (b) the relation between the cohesive energies and interlayer spacing distance for stacking pattern II after geometric optimization.

    图 3  (a) 单层GaN能带图; (b) 单层g-C3N4能带图; (c) GaN/g-C3N4异质结能带图; (d) GaN/g-C3N4异质结的总态密度及分态密度图; (e) 单层GaN、单层g-C3N4及异质结的吸收光谱图

    Fig. 3.  Energy band diagram of (a) monolayer GaN, (b) monolayer g-C3N4 and (c) GaN/g-C3N4 heterojunction; (d) total density of states and partial density of states of GaN/g-C3N4 heterojunction; (e) absorption spectra of monolayer GaN, g-C3N4 and GaN/g-C3N4 heterojunction.

    图 4  (a) 单层g-C3N4功函数; (b) 单层GaN功函数; (c) GaN/g-C3N4异质结功函数; (d) GaN/g-C3N4异质结的三维差分电荷密度图(绿色和紫色分别表示电荷耗尽和电荷积累)

    Fig. 4.  Work function of (a) monolayer g-C3N4, (b) monolayer GaN and (c) GaN/g-C3N4 heterojunction; (d) three-dimensional differential charge density diagram of GaN/g-C3N4 heterojunction (green and purple represent charge depletion and charge accumulation, respectively).

    图 5  在不同外加电场(–0.6—0.5 V/Å)下GaN/g-C3N4异质结的能带结构图, 能量零点设置为费米能级 (a) –0.6 V/Å; (b) –0.5 V/Å; (c) –0.4 V/Å; (d) –0.3 V/Å; (e) –0.2 V/Å; (f) –0.1 V/Å; (g) 0 V/Å; (h) 0.1 V/Å; (i) 0.2 V/Å; (j) 0.3 V/Å; (k) 0.4 V/Å; (l) 0.5 V/Å

    Fig. 5.  Energy band structure of GaN/g-C3N4 heterojunction under different applied electric fields, with the energy zero set as the Fermi level: (a) –0.6 V/Å; (b) –0.5 V/Å; (c) –0.4 V/Å; (d) –0.3 V/Å; (e) –0.2 V/Å; (f) –0.1 V/Å; (g) 0 V/Å; (h) 0.1 V/Å; (i) 0.2 V/Å; (j) 0.3 V/Å; (k) 0.4 V/Å; (l) 0.5 V/Å.

    图 6  GaN/g-C3N4能带结构随外电场的变化

    Fig. 6.  Variation trend of GaN/g-C3N4 band gap width with external electric field.

    Baidu
  • [1]

    Cao S W, Yu J G 2014 Phys. Chem. Lett. 5 2101Google Scholar

    [2]

    Mao N, Gao X M, Zhang C, Shu C, Ma W Y, Wang F, Jiang J X 2019 Dalton. T. 48 14864Google Scholar

    [3]

    Antil B, Kumar L, Ranjan R, Shenoy S, Tarafder K, Gopinath C S, Deka S 2021 ACS Appl. Energ. Mater. 4 3118Google Scholar

    [4]

    Fu J W, Xu Q L, Low J X, Jiang C J, Yu J G 2019 A Appl. Catal. B-Environ. 243 556Google Scholar

    [5]

    Song Y H, She X J, Yi J J, Mo Z, Liu L, Xu H, Li H M 2017 Phys. Status. Solidi. A 214 1600704Google Scholar

    [6]

    Na S, Seo S, Lee H 2020 Catalysts 10 679Google Scholar

    [7]

    Ali S M, Khan M A M, ALKhuraiji T S 2020 J. Mater. Sci-Mater. El. 31 14901Google Scholar

    [8]

    Eisa M H 2019 Results Phys. 13 102330Google Scholar

    [9]

    Tong T, Zhu B C, Jiang C J, Cheng B, Yu J G 2018 Appl. Surf. Sci. 433 1175Google Scholar

    [10]

    Zhu B C, Zhang L Y, Cheng B, Yu Y, Yu J G 2021 Chin. J. Catal. 42 115Google Scholar

    [11]

    Li H H, Wu Y, Li L, Gong Y Y, Niu L Y, Liu X J, Wang T, Sun C Q, Li C 2018 Appl. Surf. Sci. 457 735Google Scholar

    [12]

    Liu X L, Ma R, Zhuang L, Hu B W, Chen J R, Liu X Y, Wang X K 2021 Crit. Rev. Env. Sci. Tec. 51 751Google Scholar

    [13]

    Li S J, Li Y Y, Shao L X, Wang C D 2021 ChemistrySelect 6 181Google Scholar

    [14]

    Ariyanti D, Mukhtar S, Ahmed N, Liu Z, Dong J, Gao W 2020 Int. J. Mod. Phys. B 34 2040067Google Scholar

    [15]

    Li J Y, Liu B K, Han X L, Liu B B, Jiang J X, Liu S R, Zhang J T, Shi H Z 2021 Sep. Purif. Technol. 261 118306Google Scholar

    [16]

    Wang G R, Jin Z L 2019 Chemistry Select 4 3602Google Scholar

    [17]

    Xu Q L, Zhu B C, Jiang C J, Cheng B, Yu J G 2018 Solar RRL 2 1800006Google Scholar

    [18]

    Zhang M, Liu X Z, Zeng X, Wang M F, Shen J Y, Liu R Y 2020 Chem. Phy. Lett. X 7 100049Google Scholar

    [19]

    Ye C Y, Wang R, Wang H Y, Jiang F B 2020 BMC Chemistry 14 65Google Scholar

    [20]

    Al-Zaqri N, Ahmed M A, Alsalme A, Alharthi F, Alsyahi A, Elmahgary M G, Galal A H 2021 J. Mater. Sci-Mater. El. 32 2601Google Scholar

    [21]

    Ai C Z, Li J, Yang L, Wang Z P, Wang Z, Zeng Y M, Deng R, Lin S W, Wang C Z 2020 Chem. Sus. Chem. 13 4985Google Scholar

    [22]

    Ma X G, Chen C, Hu J S, Zheng M K, Wang H H, Dong S J, Huang C Y, Chen X B 2019 J. Alloy. Compd. 788 1Google Scholar

    [23]

    Xue Z, Zhang X Y, Qin J Q, Liu R P 2020 Appl. Surf. Sci. 510 145489Google Scholar

    [24]

    Wu F, Zhang Z B, Cheng Z P, Zhou R Z, Lin Y L, Liu Y H, Wang Y Q, Cao X H, Liu M G, Liu Y H 2021 J. Radioanal. Nucl. Ch. 329 1125Google Scholar

    [25]

    Lou P, Lee J Y 2020 ACS Appl. Mater. Inter. 12 14289Google Scholar

    [26]

    Shu H B 2020 Mat. Sci. Eng. B-Adv. 261 114672Google Scholar

    [27]

    Sivasamy R, Paredes-Gil K, Quero F 2022 Physica. E 135 114994Google Scholar

    [28]

    Wang J, Shu H B, Liang P, Wang N, Cao D, Chen X S 2019 J. Phys. Chem. C 123 3861Google Scholar

    [29]

    Li X R, Dai Y, Ma Y D, Han S H, Huang B B 2014 Phys. Chem. Chem. Phys. 16 4230Google Scholar

    [30]

    Ye J X, Liu J W, An Y K 2020 Appl. Surf. Sci. 501 144262Google Scholar

    [31]

    Bai K F, Cui Z, Li E L, Ding Y C, Zheng J S, Liu C, Zheng Y P 2020 Vacuum 180 109562Google Scholar

    [32]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Krist. Cryst. Mater. 220 567Google Scholar

    [33]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [34]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 73005Google Scholar

    [35]

    Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar

    [36]

    危阳, 马新国, 祝林, 贺华, 黄楚云 2017 66 087101Google Scholar

    Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta. Phys. Sin. 66 087101Google Scholar

    [37]

    Ma X G, Hu J S, He H, Dong S J, Huang C Y, Chen X B 2018 ACS Appl. Nano Mater. 1 5507Google Scholar

    [38]

    Liu J J 2015 J. Phys. Chem. C 119 28417Google Scholar

    [39]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta. Phys. Sin. 68 097101Google Scholar

    [40]

    Liao J M, Sa B S, Zhou J, Ahuja R, Sun Z 2014 J. Phys. Chem. C 118 17594Google Scholar

    [41]

    Ivanov A S, Miller E, Boldyrev A I, Kameoka Y, Sato T, Tanaka K 2015 J. Phys. Chem. C 119 12008Google Scholar

    [42]

    Yeoh K H, Yoon T L, Lim T L, Rusi, Ong D S 2019 Superlattice. Microst. 130 428Google Scholar

    [43]

    张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能 2019 68 017401Google Scholar

    Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X, Huang Y N 2019 Acta. Phys. Sin. 68 017401Google Scholar

    [44]

    Pham T A, Ping Y, Galli G 2017 Nat. Mater. 16 401Google Scholar

    [45]

    Liu Z R, Yu X, Li L L 2020 Chinese J. Catal. 41 534Google Scholar

  • [1] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质.  , 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [3] 徐梅, 令狐荣锋, 支启军, 杨向东, 吴位巍. 自由基分子BeH外电场特性.  , 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [4] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究.  , 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [5] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究.  , 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [6] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应.  , 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [7] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究.  , 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [8] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究.  , 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [9] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究.  , 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [10] 徐梅, 令狐荣锋, 李应发, 杨向东, 王晓璐. LiF分子在外电场中的物理性质研究.  , 2012, 61(9): 093102. doi: 10.7498/aps.61.093102
    [11] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖. GaN(0001)表面电子结构和光学性质的第一性原理研究.  , 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [12] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究.  , 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [13] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究.  , 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [14] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究.  , 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [15] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究.  , 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [16] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究.  , 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [17] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [18] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究.  , 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质.  , 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [20] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究.  , 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
计量
  • 文章访问数:  6700
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-01-06
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-05

/

返回文章
返回
Baidu
map