搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能量粒子测地声模与Dimits区漂移波相互作用

魏广宇 陈凝飞 仇志勇

引用本文:
Citation:

高能量粒子测地声模与Dimits区漂移波相互作用

魏广宇, 陈凝飞, 仇志勇

Nonlinear interaction of EGAM with DW turbulence in the Dimits shift region

Wei Guang-Yu, Chen Ning-Fei, Qiu Zhi-Yong
PDF
HTML
导出引用
  • 基于包含驱动和阻尼的三波非线性相互作用模型, 构建了一个描述高能量粒子测地声模(EGAM)与Dimits区漂移波湍流相互作用的系统, 并在系统的线性增长及非线性振荡阶段分别进行了解析和数值研究. 更进一步的数值结果表明, 在忽略EGAM的贡献时, 该系统具有随着线性驱动/阻尼率等参数的变化, 从极限环振荡经历倍周期分岔最终进入混沌的行为特征.在此基础上, 形式上构建了本系统的非线性饱和Dimits区, 并研究了EGAM对Dimits区漂移波的影响. 结果表明, 对于不同幅度和频率的EGAM, 被调制后的漂移波将表现出受到激发或抑制的效果. 对此, 采用相空间分析的方法给出了相应的解释.
    Based on the nonlinear three-wave interaction model including driving and dissipation, we construct a system to describe the nonlinear interaction between energetic particle induced geodesic acoustic mode (EGAM) and the drift waves turbulence in the Dimits shift region, and study both analytically and numerically the linear growth and nonlinear oscillation phases of the system, respectively. Further numerical results show that, without the contribution of EGAM, the system goes through limited cycle oscillation to period doubling, and finally route to chaos with the change of the linear drive/dissipation rate. On this basis, the nonlinear saturated “Dimits region” of the system is constructed, which is then used to study the influence of EGAM on the drift wave in the Dimits region. The results show that for EGAM with different amplitude and frequency, the modulated drift wave can be either excited or suppressed, partly reproduces the results from large scale simulation. Finally, We use the method of phase space analysis to give the corresponding explanation.
      通信作者: 仇志勇, zqiu@zju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFE0301900)和国家自然科学基金(批准号: 11875233)资助的课题
      Corresponding author: Qiu Zhi-Yong, zqiu@zju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFE0301900) and the National Natural Science Foundation of China (Grant No. 11875233)
    [1]

    Horton W 1999 Rev. Mod. Phys. 71 735Google Scholar

    [2]

    Artsimovich L A, Bobrovskii G A, Mirnov S A, Razumova K A, Strelkov V S 1967 Sov. At. Energy 22 325

    [3]

    Chen L 1999 J. Geophys. Res. Space Phys. 104 2421Google Scholar

    [4]

    Dimits A M, Bateman G, Beer M A, Cohen B I, Dorland W, Hammett G W, Kim C, Kinsey J E, Kotschenreuther M, Kritz A H, Lao L L, Mandrekas J, Nevins W M, Parker S E, Redd A J, Shumaker D E, Sydora R, Weiland J 2000 Phys. Plasmas 7 969Google Scholar

    [5]

    Lin Z, Hahm T S, Lee W W, Tang W M, White R B 1998 Science 281 1835Google Scholar

    [6]

    Chen L, Lin Z, White R 2000 Physics of Plasmas 7 3129Google Scholar

    [7]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Controlled Fusion 47 R35Google Scholar

    [8]

    Rosenbluth M N, Hinton F L 1998 Phys. Rev. Lett. 80 724Google Scholar

    [9]

    Winsor N, Johnson J L, Dawson J M 1968 Phys. Fluids 11 2448Google Scholar

    [10]

    Zonca F, Chen L 2008 Europhys. Lett. 83 35001Google Scholar

    [11]

    Nazikian R, Fu G Y, Austin M E, Berk H L, Budny R V, Gorelenkov N N, Heidbrink W W, Holcomb C T, Kramer G J, McKee G R, Makowski M A, Solomon W M, Shafer M, Strait E J, Zeeland M A V 2008 Phys. Rev. Lett. 101 185001Google Scholar

    [12]

    Fu G 2008 Phys. Rev. Lett. 101 185002Google Scholar

    [13]

    Berk H, Zhou T 2010 Nuclear Fusion 50 035007Google Scholar

    [14]

    Qiu Z, Zonca F, Chen L 2010 Plasma Phys. Controlled Fusion 52 095003Google Scholar

    [15]

    Qiu Z, Chen L, Zonca F 2018 Plasma Sci. Technol. 20 094004Google Scholar

    [16]

    Zarzoso D, Sarazin Y, Garbet X, Dumont R, Strugarek A, Abiteboul J, Cartier-Michaud T, Dif-Pradalier G, Ghendrih P, Grandgirard V, Latu G, Passeron C, Thomine O 2013 Phys. Rev. Lett. 110 125002Google Scholar

    [17]

    Chen N F, Hu H, Zhang X, Wei S, Qiu Z 2021 Physics of Plasmas 28 042505Google Scholar

    [18]

    Qiu Z, Chen L, Zonca F 2014 Phys. Plasmas 21 022304Google Scholar

    [19]

    Zonca F, White R B, Chen L 2004 Phys. Plasmas 11 2488Google Scholar

    [20]

    Guo Z, Chen L, Zonca F 2009 Phys. Rev. Lett. 103 055002Google Scholar

    [21]

    Wersinger J M, Finn J M, Ott E 1980 Phys. Fluids 23 1142Google Scholar

    [22]

    Sagdeev R, Galeev A 1969 Nonlinear Plasma Theory (AW Benjamin Inc.)

    [23]

    Edelstein D C, Wachman E S, Tang C L 1989 Appl. Phys. Lett. 54 1728Google Scholar

    [24]

    Hughes D W, Proctor M R E 1992 J. Fluid Mech. 244 583

    [25]

    Anderson D, Bondeson A 1977 Phys. Fluids 20 1072Google Scholar

    [26]

    Manley J M, Rowe H E 1956 Proc. IRE 44 904Google Scholar

    [27]

    Chen N, Wei S, Wei G, Qiu Z 2022 Plasma Phys. Controlled Fusion 64 015503Google Scholar

  • 图 1  忽略3支波的线性增长/阻尼时, 3支波强度随时间的演化. 红色实线、蓝色虚线和黑色点线分别代表泵浦波、边带模和ZFZF的演化曲线

    Fig. 1.  Evolution of the strength of the three waves with time when the linear growth/damping of the three waves is ignored. Red solid line, blue dashed line and black dotted line represent the evolution curve of pump wave, sideband and ZFZF, respectively

    图 2  (a) $ \gamma_1/\gamma_0 $$ \gamma_{\rm{Z}}/\gamma_0 $的参数空间内, 当参数取值在黄色区域(标记为U)时, 系统无限增长, 当参数取值在蓝色区域(标记为S)时, 系统稳定在有限范围内; (b), (c)两种情形下3个波的时间演化曲线

    Fig. 2.  (a) In the parameter space of $ \gamma_1/\gamma_0 $ and $ \gamma_{\rm{Z}}/\gamma_0 $, when the parameter value is set in the yellow region (marked by U), the system grows infinitely, while in the blue region (marked by S), a stable state of the system is obtained; (b), (c) time evolution curves of the three waves in these two cases

    图 3  (a) $ \gamma_1/\gamma_0 = 5.0 $, $ \gamma_{\rm{Z}}/\gamma_0 = 5.5 $时泵浦波$ |\phi_0 | $随时间的演化; (b) $ \gamma_1/\gamma_0 = 5.0 $, $ \gamma_{\rm{Z}}/\gamma_0 = 5.8 $时泵浦波$ |\phi_0 | $随时间的演化; (c) $ z_n = \max{\{|\phi_0(t)|\}} $$ \gamma_{\rm{Z}}/\gamma_0 $变化的散点图

    Fig. 3.  (a) Time evolution curves of pump wave $ |\phi_0 | $ when $ \gamma_1/\gamma_0 = 5.0 $, $ \gamma_{\rm{Z}}/\gamma_0 = 5.5 $; (b) time evolution curves of pump wave $ |\phi_0 | $ when $ \gamma_1/\gamma_0 = 5.0 $, $ \gamma_{\rm{Z}}/\gamma_0 = 5.8 $; (c) scatter plot of $ z_n = \max{\{|\phi_0(t)|\}} $ varying with $ \gamma_{\rm{Z}}/\gamma_0 $

    图 4  (a) 加入EGAM之前系统的周期性振荡. 蓝色实线、蓝色虚线和蓝色点线分别代表泵浦波、边带模和ZFZF和的时间演化曲线. (b) 周期振荡的EGAM曲线, 初始阶段逐步增强以实现平滑过渡

    Fig. 4.  (a) Periodic oscillation of the system before EGAM is introduced. The blue solid line, blue dashed line and blue dotted line represent the evolution curve of pump wave, sideband and ZFZF, respectively. (b) Periodically oscillating EGAM. The initial phase is progressively enhanced to achieve a smooth transition.

    图 5  (a) 5个不动点在相空间的相对分布; (b) 不动点$ P_1 $$ P_3 $, (c) 不动点$ P_2 $$ P_4 $处Jacobi矩阵的3个本征值的实部随$ \phi_{\rm{E}} $的变化. 此处$ \gamma_0 = 1.0 $, $ \gamma_1 = 3.0 $, $ \gamma_{\rm{Z}} = 3.1 $

    Fig. 5.  (a) Relative distribution of five fixed points in phase space. Dependence of the real part of the three eigenvalues of Jacobi matrix at fixed points (b)$ P_1 $/$ P_3 $ and (c)$ P_2 $/$ P_4 $. Here, $ \gamma_0 = 1.0 $, $ \gamma_1 = 3.0 $, $ \gamma_{\rm{Z}} = 3.1 $

    图 6  (a) $ \phi_{\rm{E}} = 2.0 $时的大极限环; (b) $ \phi_{\rm{E}} = 1.0 $时的小极限环; (c) $ \phi_{\rm{E }}= 0.6 $时的中等尺寸极限环; (d) $ \phi_{\rm{E}} $从1.4减小到0.6, 两个小极限环合并为中等尺寸极限环的过程

    Fig. 6.  (a) Big limit cycle when $ \phi_{\rm{E}} = 2.0 $; (b) small limit cycle when $ \phi_{\rm{E}} = 1.0 $; (c) medium size limit cycle when $ \phi_{\rm{E}} = 0.6 $; (d) two small limit cycles combine into one medium size limit cycle with $ \phi_{\rm{E}} $ decreasing from 1.4 to 0.6

    图 7  (a) $ \phi_{\rm{E}} = 1.4 $, $ \omega_{\rm{E}} = 0.02\pi $时泵浦波$ |\phi_0 | $随时间的演化及(b)相应的相空间轨迹. (c) $ \phi_{\rm{E}} = 2.8 $, $ \omega_{\rm{E}} = 0.02\pi $时三波随时间的演化及(d) 相应的相空间轨迹. (e) $ \phi_{\rm{E}} = 1.4 $, $ \omega_{\rm{E}} = 0.04\pi $时三波随时间的演化及(f) 相应的相空间轨迹

    Fig. 7.  (a) Time evolution of pump wave $ |\phi_0 | $ when $ \phi_{\rm{E}} = 1.4 $, $ \omega_{\rm{E}} = 0.02\pi $ and (b) corresponding trajectory in phase space. (c) Time evolution of three waves when $ \phi_{\rm{E}} = 2.8 $, $ \omega_{\rm{E}} = 0.02\pi $ and (d) corresponding trajectory in phase space. (e) Time evolution of three waves when $ \phi_{\rm{E}} = 1.4 $, $ \omega_{\rm{E}} = 0.04\pi $ and (f) corresponding trajectory in phase space.

    Baidu
  • [1]

    Horton W 1999 Rev. Mod. Phys. 71 735Google Scholar

    [2]

    Artsimovich L A, Bobrovskii G A, Mirnov S A, Razumova K A, Strelkov V S 1967 Sov. At. Energy 22 325

    [3]

    Chen L 1999 J. Geophys. Res. Space Phys. 104 2421Google Scholar

    [4]

    Dimits A M, Bateman G, Beer M A, Cohen B I, Dorland W, Hammett G W, Kim C, Kinsey J E, Kotschenreuther M, Kritz A H, Lao L L, Mandrekas J, Nevins W M, Parker S E, Redd A J, Shumaker D E, Sydora R, Weiland J 2000 Phys. Plasmas 7 969Google Scholar

    [5]

    Lin Z, Hahm T S, Lee W W, Tang W M, White R B 1998 Science 281 1835Google Scholar

    [6]

    Chen L, Lin Z, White R 2000 Physics of Plasmas 7 3129Google Scholar

    [7]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Controlled Fusion 47 R35Google Scholar

    [8]

    Rosenbluth M N, Hinton F L 1998 Phys. Rev. Lett. 80 724Google Scholar

    [9]

    Winsor N, Johnson J L, Dawson J M 1968 Phys. Fluids 11 2448Google Scholar

    [10]

    Zonca F, Chen L 2008 Europhys. Lett. 83 35001Google Scholar

    [11]

    Nazikian R, Fu G Y, Austin M E, Berk H L, Budny R V, Gorelenkov N N, Heidbrink W W, Holcomb C T, Kramer G J, McKee G R, Makowski M A, Solomon W M, Shafer M, Strait E J, Zeeland M A V 2008 Phys. Rev. Lett. 101 185001Google Scholar

    [12]

    Fu G 2008 Phys. Rev. Lett. 101 185002Google Scholar

    [13]

    Berk H, Zhou T 2010 Nuclear Fusion 50 035007Google Scholar

    [14]

    Qiu Z, Zonca F, Chen L 2010 Plasma Phys. Controlled Fusion 52 095003Google Scholar

    [15]

    Qiu Z, Chen L, Zonca F 2018 Plasma Sci. Technol. 20 094004Google Scholar

    [16]

    Zarzoso D, Sarazin Y, Garbet X, Dumont R, Strugarek A, Abiteboul J, Cartier-Michaud T, Dif-Pradalier G, Ghendrih P, Grandgirard V, Latu G, Passeron C, Thomine O 2013 Phys. Rev. Lett. 110 125002Google Scholar

    [17]

    Chen N F, Hu H, Zhang X, Wei S, Qiu Z 2021 Physics of Plasmas 28 042505Google Scholar

    [18]

    Qiu Z, Chen L, Zonca F 2014 Phys. Plasmas 21 022304Google Scholar

    [19]

    Zonca F, White R B, Chen L 2004 Phys. Plasmas 11 2488Google Scholar

    [20]

    Guo Z, Chen L, Zonca F 2009 Phys. Rev. Lett. 103 055002Google Scholar

    [21]

    Wersinger J M, Finn J M, Ott E 1980 Phys. Fluids 23 1142Google Scholar

    [22]

    Sagdeev R, Galeev A 1969 Nonlinear Plasma Theory (AW Benjamin Inc.)

    [23]

    Edelstein D C, Wachman E S, Tang C L 1989 Appl. Phys. Lett. 54 1728Google Scholar

    [24]

    Hughes D W, Proctor M R E 1992 J. Fluid Mech. 244 583

    [25]

    Anderson D, Bondeson A 1977 Phys. Fluids 20 1072Google Scholar

    [26]

    Manley J M, Rowe H E 1956 Proc. IRE 44 904Google Scholar

    [27]

    Chen N, Wei S, Wei G, Qiu Z 2022 Plasma Phys. Controlled Fusion 64 015503Google Scholar

  • [1] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [2] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用.  , 2021, (): . doi: 10.7498/aps.70.20211430
    [3] 杨建荣, 毛杰键, 吴奇成, 刘萍, 黄立. 强碰撞磁化尘埃等离子体中的漂移波.  , 2020, 69(17): 175201. doi: 10.7498/aps.69.20200468
    [4] 张宇, 管玉平, 陈朝晖, 刘海龙, 黄瑞新. 不同滤波方法对揭示全球海洋条带结构的比较.  , 2015, 64(14): 149201. doi: 10.7498/aps.64.149201
    [5] 章扬忠, 谢涛. 轴对称环状静电模的漂移波湍流参量激发理论研究.  , 2014, 63(3): 035202. doi: 10.7498/aps.63.035202
    [6] 陈冉, 刘阿娣, 邵林明, 胡广海, 金晓丽. 使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构.  , 2014, 63(18): 185201. doi: 10.7498/aps.63.185201
    [7] 陆赫林, 陈忠勇, 李跃勋, 杨恺. 磁场剪切对离子温度梯度模带状流产生的影响.  , 2011, 60(8): 085202. doi: 10.7498/aps.60.085202
    [8] 杨朝羽, 唐国宁. 基于蜂拥控制算法思想的时空混沌耦合反馈控制.  , 2009, 58(1): 143-149. doi: 10.7498/aps.58.143
    [9] 陆赫林, 彭晓东, 邱孝明, 王顺金. 逆磁效应对交换模湍流产生的带状流的影响.  , 2009, 58(9): 6387-6391. doi: 10.7498/aps.58.6387
    [10] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型.  , 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [11] 洪文玉, 严龙文, 赵开君, 兰 涛, 董家齐, 俞昌旋, 程 均, 钱 俊, 刘阿棣, 罗萃文, 徐征宇, 黄 渊, 杨青巍. HL-2A装置中的带状流三维特性研究和探针设计.  , 2008, 57(2): 962-968. doi: 10.7498/aps.57.962
    [12] 贺凯芬, 胡岗. 微扰法解由正弦波驱动的非线性漂移波的分岔.  , 1991, 40(12): 1948-1954. doi: 10.7498/aps.40.1948
    [13] 陈银华, 朱栋培, 杨维紘. 磁化等离子体中静电漂移波和剪切阿耳芬波的非线性耦合.  , 1991, 40(10): 1638-1641. doi: 10.7498/aps.40.1638
    [14] 邱孝明. 漂移波湍流中“clumps”理论.  , 1983, 32(8): 1027-1034. doi: 10.7498/aps.32.1027
    [15] 章扬忠. 非线性电子磁漂移波.  , 1981, 30(12): 1649-1658. doi: 10.7498/aps.30.1649
    [16] 章扬忠. 在相干重整化中的非线性漂移波能量守恒.  , 1981, 30(11): 151-154. doi: 10.7498/aps.30.151
    [17] 章扬忠. 在相干重整化中的非线性漂移波能量守恒.  , 1981, 30(11): 1565-1568. doi: 10.7498/aps.30.1565
    [18] 张承福. 低频漂移波与赝经典扩散.  , 1980, 29(2): 214-224. doi: 10.7498/aps.29.214
    [19] 张承福. 离子有限拉摩半径效应对低频漂移波本征模的影响.  , 1980, 29(6): 778-787. doi: 10.7498/aps.29.778
    [20] 张承福. 随机磁场对漂移波本征模的影响.  , 1980, 29(11): 1357-1366. doi: 10.7498/aps.29.1357
计量
  • 文章访问数:  4512
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 修回日期:  2021-09-02
  • 上网日期:  2021-12-22
  • 刊出日期:  2022-01-05

/

返回文章
返回
Baidu
map