搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同滤波方法对揭示全球海洋条带结构的比较

张宇 管玉平 陈朝晖 刘海龙 黄瑞新

引用本文:
Citation:

不同滤波方法对揭示全球海洋条带结构的比较

张宇, 管玉平, 陈朝晖, 刘海龙, 黄瑞新

Intercomparison of one-dimensional detecting methods of unveiling the global ocean striations

Zhang Yu, Guan Yu-Ping, Chen Zhao-Hui, Liu Hai-Long, Huang Rui-Xin
PDF
导出引用
  • 海洋条带结构是近年物理海洋学研究的一个新热点. 在海洋中, 条带结构往往被大尺度环流过程所掩盖. 把这种隐蔽的海水运动现象显现出来的办法是对时间平均的速度场进行空间滤波. 利用全球简单海洋资料同化分析系统资料和中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室的气候系统海洋模式模拟数据对三种一维滤波方法进行了比较, 分别是常用的高斯和汉宁滤波方法, 以及本文引入的切比雪夫滤波方法. 结果表明, 尽管三种方法均可获得条带结构, 但以切比雪夫方法为最佳; 另外, 设计高通滤波器时需设定截断频率, 而它的选定取决于对具体数据的频谱分析, 当选取的归一化的截断频率值在0.1和0.4之间时, 可以有效地揭示出条带结构在全球海域内的分布. 因此本文的研究方法为海洋条带结构的深入研究提供了一个有力工具.
    Striation in the ocean is a research frontier in physical oceanography. Interestingly, it has some “sisters and brothers” in Mother Nature, such as the Jovian belts, subtropical jet streams in the atmosphere, and zonal flows in plasma. This meso-scale oceanic phenomenon is, however, concomitant with but covered up by the macro-scale ocean currents or circulations. In order to unveil such zonal jet-like structures, a spatial filtering must be applied to the commonly available time-average data. Previous studies mostly focused on prominent features of striations, such as banded structures, and the generation mechanism; however, the differences revealed by applying different types of filtering methods have not received enough attention. In this paper we present a comprehensive study on the effectiveness of the different detection approaches to unveiling the striations. Three one-dimensional filtering methods: Gaussian smoothing, Hanning and Chebyshev high-pass filtering, are used to analyze SODA data and LICOM model outputs. The first two methods have been used in many previous studies; on the other hand, the Chebyshev filter is a newcomer for this purpose. Our results show that all three methods can reveal ocean banded structures, but the Chebyshev filtering is the best choice. The Gaussian smoothing is not a high pass filter, and it can merely bring regional striations, such as those in the Eastern Pacific, to light. The Hanning high pass filter can introduce a northward shifting of stripes, so it is not as good as the Chebyshev filter. In addition, a cutoff frequency is often needed in applying the high-pass filter, and this frequency depends on the spectrum analysis of the original data. In this paper, we discuss the filtering output and its spatial power spectra of three normalized cutoff-frequencies, 0.1, 0.3 and 0.7. When the cutoff-frequency is too low, the filtering is insufficient; on the other hand, if the cut-off frequency is too high, excessive filtering can happen. Our study shows that for analyzing the global ocean striations, the best normalized cutoff frequency domain is between 0.1 and 0.4. In addition, the bandwidth of striation for using the Chebyshev high pass filter to analyze the SODA data in a depth of 300 m is 150-300 km. In the general case, we propose to use the Chebyshev filter in lieu of Hanning or other methods for investigating ocean striations.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB956201, 2013CB956204)和国家自然科学基金(批准号: 91228202, 40976011)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB956201, 2013CB956204), and the National Natural Science Foundation of China (Grant Nos. 91228202, 40976011).
    [1]

    Williams G P 1978 J. Atmosph. Sci. 35 1399

    [2]

    Soomere T 1995 Phys. Rev. Lett. 75 2440

    [3]

    Lu H L, Chen Z Y, Li Y X, Yang K 2011 Acta Phys. Sin. 60 085202 (in Chinese) [陆赫林, 陈忠勇, 李跃勋, 杨恺 2011 60 085202]

    [4]

    Chen R, Liu A D, Shao M L, Hu G H, Jin X L 2014 Acta Phys. Sin. 63 185201 (in Chinese) [陈冉, 刘阿娣, 邵明林, 胡广海, 金晓丽 2014 63 185201]

    [5]

    Zhang Y Z, Xie T 2014 Acta Phys. Sin. 63 035202 (in Chinese) [章扬忠, 谢涛 2014 63 035202]

    [6]

    Shi B R 2010 Chin. Phys. B 19 095201

    [7]

    Baldwin M P, Rhines P B, Huang H P 2007 Science 315 467

    [8]

    Maximenko N A, Bang B, Sasaki H 2005 Geophys. Res. Lett. 32 L12607

    [9]

    van Sebille E, Kamenkovich I, Willis J K 2005 Geophys. Res. Lett. 38 L02606

    [10]

    Ollitrault M, Lankhorst M, Fratantoni D, Richardson P, Zenk W 2006 Geophys. Res. Lett. 33 L05605

    [11]

    Wang J B, Spall M A, Flierl G R, Malanotte-Rizzoli P 2012 Geophys. Res. Lett. 39 L10601

    [12]

    Maximenko N A, Melnichenko O V, Niller P P, Sasaki H 2008 Geophys. Res. Lett. 35 L08603

    [13]

    Buckingham C E, Cornillon P C 2013 J. Geophys. Res. 118 448

    [14]

    Cravatte S, Kessler W S, Marin F 2012 J. Phys. Oceanography 42 1475

    [15]

    Kamenkovich I, Berloff P, Pedlosky J 2009 J. Phys. Oceanography 39 1631

    [16]

    Huang R X 2013 J. Tropical Oceanography 32 1 (in Chinese) [黄瑞新 2013 热带海洋学报 32 1]

    [17]

    Qiu B, Rudnick D L, Chen S M, Kashino Y J 2013 Geophys. Res. Lett. 40 2183

    [18]

    Davis A, Lorenzo E D, Luo H, Belmadani A, Maximenko N, Melnichenko O, Schneider N 2014 Geophys. Res. Lett. 41 L057956

    [19]

    Ivanov L M, Collins C A, Margolina T M 2012 J. Atmosph. Oceanic Technol. 29 1111

    [20]

    Melnichenko O V, Maximenko N A, Schneider N, Sasaki H 2010 Ocean Dynamics 60 653

    [21]

    Yu Y Q, Liu H L, Lin P F 2012 Chin. Sci. Bull. 57 3908

    [22]

    Feng X, Liu H L, Wang F C, Yu Y Q, Yuan D L 2013 Chin. Sci. Bull. 58 3504

    [23]

    Rhines P B 1975 J. Fluid Mech. 69 417

    [24]

    Richards K J, Maximenko N A, Bryan F O, Sasaki H 2006 Geophys. Res. Lett. 33 L03605

  • [1]

    Williams G P 1978 J. Atmosph. Sci. 35 1399

    [2]

    Soomere T 1995 Phys. Rev. Lett. 75 2440

    [3]

    Lu H L, Chen Z Y, Li Y X, Yang K 2011 Acta Phys. Sin. 60 085202 (in Chinese) [陆赫林, 陈忠勇, 李跃勋, 杨恺 2011 60 085202]

    [4]

    Chen R, Liu A D, Shao M L, Hu G H, Jin X L 2014 Acta Phys. Sin. 63 185201 (in Chinese) [陈冉, 刘阿娣, 邵明林, 胡广海, 金晓丽 2014 63 185201]

    [5]

    Zhang Y Z, Xie T 2014 Acta Phys. Sin. 63 035202 (in Chinese) [章扬忠, 谢涛 2014 63 035202]

    [6]

    Shi B R 2010 Chin. Phys. B 19 095201

    [7]

    Baldwin M P, Rhines P B, Huang H P 2007 Science 315 467

    [8]

    Maximenko N A, Bang B, Sasaki H 2005 Geophys. Res. Lett. 32 L12607

    [9]

    van Sebille E, Kamenkovich I, Willis J K 2005 Geophys. Res. Lett. 38 L02606

    [10]

    Ollitrault M, Lankhorst M, Fratantoni D, Richardson P, Zenk W 2006 Geophys. Res. Lett. 33 L05605

    [11]

    Wang J B, Spall M A, Flierl G R, Malanotte-Rizzoli P 2012 Geophys. Res. Lett. 39 L10601

    [12]

    Maximenko N A, Melnichenko O V, Niller P P, Sasaki H 2008 Geophys. Res. Lett. 35 L08603

    [13]

    Buckingham C E, Cornillon P C 2013 J. Geophys. Res. 118 448

    [14]

    Cravatte S, Kessler W S, Marin F 2012 J. Phys. Oceanography 42 1475

    [15]

    Kamenkovich I, Berloff P, Pedlosky J 2009 J. Phys. Oceanography 39 1631

    [16]

    Huang R X 2013 J. Tropical Oceanography 32 1 (in Chinese) [黄瑞新 2013 热带海洋学报 32 1]

    [17]

    Qiu B, Rudnick D L, Chen S M, Kashino Y J 2013 Geophys. Res. Lett. 40 2183

    [18]

    Davis A, Lorenzo E D, Luo H, Belmadani A, Maximenko N, Melnichenko O, Schneider N 2014 Geophys. Res. Lett. 41 L057956

    [19]

    Ivanov L M, Collins C A, Margolina T M 2012 J. Atmosph. Oceanic Technol. 29 1111

    [20]

    Melnichenko O V, Maximenko N A, Schneider N, Sasaki H 2010 Ocean Dynamics 60 653

    [21]

    Yu Y Q, Liu H L, Lin P F 2012 Chin. Sci. Bull. 57 3908

    [22]

    Feng X, Liu H L, Wang F C, Yu Y Q, Yuan D L 2013 Chin. Sci. Bull. 58 3504

    [23]

    Rhines P B 1975 J. Fluid Mech. 69 417

    [24]

    Richards K J, Maximenko N A, Bryan F O, Sasaki H 2006 Geophys. Res. Lett. 33 L03605

  • [1] 沈勇, 沈煜航, 董家齐, 李佳, 石中兵, 宗文刚, 潘莉, 李继全. 特定湍动激励-响应类型二次非线性系统双谱分析仿真建模.  , 2024, 73(18): 184701. doi: 10.7498/aps.73.20232013
    [2] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用.  , 2022, 71(1): 015201. doi: 10.7498/aps.71.20211430
    [3] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用.  , 2021, (): . doi: 10.7498/aps.70.20211430
    [4] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [5] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟.  , 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [6] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性.  , 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [7] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 激波与层流/湍流边界层相互作用实验研究.  , 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [8] 陈冉, 刘阿娣, 邵林明, 胡广海, 金晓丽. 使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构.  , 2014, 63(18): 185201. doi: 10.7498/aps.63.185201
    [9] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究.  , 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [10] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性.  , 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [11] 陆赫林, 陈忠勇, 李跃勋, 杨恺. 磁场剪切对离子温度梯度模带状流产生的影响.  , 2011, 60(8): 085202. doi: 10.7498/aps.60.085202
    [12] 季小玲. 部分相干平顶光束通过湍流大气传输的等效曲率半径.  , 2010, 59(6): 3953-3958. doi: 10.7498/aps.59.3953
    [13] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究.  , 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [14] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻.  , 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [15] 陆赫林, 彭晓东, 邱孝明, 王顺金. 逆磁效应对交换模湍流产生的带状流的影响.  , 2009, 58(9): 6387-6391. doi: 10.7498/aps.58.6387
    [16] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型.  , 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [17] 桑海波, 贺凯芬. 噪声在外加周期信号控制强湍中的作用研究.  , 2008, 57(11): 6830-6836. doi: 10.7498/aps.57.6830
    [18] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制.  , 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [19] 洪文玉, 严龙文, 赵开君, 兰 涛, 董家齐, 俞昌旋, 程 均, 钱 俊, 刘阿棣, 罗萃文, 徐征宇, 黄 渊, 杨青巍. HL-2A装置中的带状流三维特性研究和探针设计.  , 2008, 57(2): 962-968. doi: 10.7498/aps.57.962
    [20] 张旭, 沈柯. 环形腔中激光振荡输出的横向斑图及向光学湍流的转变.  , 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
计量
  • 文章访问数:  6329
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-22
  • 修回日期:  2015-02-23
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map