- 
				低噪声微波在冷原子光钟、光子雷达、大科学装置远程同步等领域具有重要的应用价值. 本文介绍了一种基于光学-微波相位探测技术的低噪声微波产生方案, 利用光纤环路光学-微波鉴相器, 将超稳激光的频率稳定度相干传递至介质振荡器. 实验采用梳齿相位参考至超稳激光的窄线宽掺铒光纤飞秒光学频率梳, 结合光纤环路光学-微波鉴相器和精密锁相装置, 将7 GHz介质振荡器同步至光频梳重复频率的高次谐波, 同步后的光脉冲序列与微波信号的剩余相位噪声为–100 dBc/Hz@1 Hz, 定时抖动为8.6 fs [1 Hz—1.5 MHz]; 通过搭建两套低噪声微波产生系统, 测得7 GHz微波的剩余相位噪声为–90 dBc/Hz@1 Hz, 对应的频率稳定度为4.8 × 10–15@1 s. 该研究结果对基于光学相干分频的低噪声微波产生提供了一种新思路.Low-noise microwave signals are of vital importance in fields such as cold atomic optical clocks, photon radars, and remote synchronization at large facilities. Here, we report a compact all-optical-fiber method to generate a low noise microwave signal, in which the fiber loop optical-microwave phase detector is used to coherently transfer the frequency stability of the ultra-stable laser to the microwave. Combining a narrow linewidth optical frequency comb and a fiber loop optical-microwave phase discriminator, a tight phase-lock between 7 GHz dielectric oscillator and optical frequency comb is achieved, the remaining phase noise of the synchronized optical pulse sequence and the microwave signal is –100 dBc/Hz@1 Hz, and the timing jitter is 8.6 fs (1 Hz—1.5 MHz); by building two sets of low-noise microwave generation systems, the measured residual phase noise of the 7 GHz microwave is –90 dBc/Hz@1 Hz, and the corresponding frequency stability is 4.8 × 10–15@1 s. These results provide a novel idea for generating the low-noise microwaves based on optical coherent frequency division.- 
													Keywords:
													
- ultra-stable laser /
- optical frequency comb /
- low noise microwave signal /
- time synchronization
 [1] Capmany J, Novak D 2007 Nat. Photon. 1 319  Google Scholar Google Scholar[2] Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guéna J, Clairon A, Tobar M E, Bize S, Le Coq Y, Santarelli G 2009 Appl. Phys. Lett. 94 141105  Google Scholar Google Scholar[3] Kim J, Cox J A, Chen J, Kärtner F X 2008 Nat. Photon. 2 733  Google Scholar Google Scholar[4] Doeleman S 2009 Frequency Standards and Metrology-Proceedings of the 7th Symposium (PacificGrove: World Scientific) p175 [5] Francois B, Calosso C E, Danet J M, Boudot R 2014 Rev. Sci. Instrum. 85 094709  Google Scholar Google Scholar[6] Grop S, Bourgeois P Y, Boudot R, Kersalé Y, Rubiola E, Giordano V 2010 Electron. Lett. 46 420  Google Scholar Google Scholar[7] Maleki L 2011 Nat. Photon. 5 728  Google Scholar Google Scholar[8] Giordano V, Grop S, Fluhr C, Dubois B, KersaléY, Rubiola E 2015 8th Symposium on Frequency Standards and Metrology (Potsdam: IOP Publishing Ltd), p012030 [9] Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667  Google Scholar Google Scholar[10] Xie X, Bouchand R, Nicolodi D, Giunta M, Hänsel W, Lezius M, Joshi A, Datta S, Alexandre C, L Michel, Tremblin P, Santarelli G, Holzwarth R, Le Coq Y 2017 Nat. Photon. 11 44  Google Scholar Google Scholar[11] Didier A, Millo J, Grop S, Dubois B, Bigler E, Rubiola E, Lacroûte C, Kersalé Y 2015 Appl. Opt. 54 3682  Google Scholar Google Scholar[12] Ivanov E N, Diddams S A, Hollberg L 2003 IEEE J. Sel. Top. Quantum Electron. 9 1059  Google Scholar Google Scholar[13] Ivanov E N, Diddams S A, Hollberg L 2005 IEEE Trans. Sonics Ultrason. 52 1068  Google Scholar Google Scholar[14] Wu K, Shum P P, Aditya S, Ouyang C, Wong J H, Lam H Q, Lee K E K 2011 J. Lightwave Technol. 29 3622  Google Scholar Google Scholar[15] Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Le Coq Y, Santarelli G 2011 Opt. Lett. 36 3654  Google Scholar Google Scholar[16] Jiang H, Taylor J, Quinlan F, Fortier T, Diddams S A 2011 IEEE Photonics J. 3 1004  Google Scholar Google Scholar[17] Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X, Campbell J C, McGrew W F, Zhang X, Hassan Y S, Nicolodi D, Beloy K, Ludlow A D, Diddams S A, Quinlan F 2020 Science 368 889  Google Scholar Google Scholar[18] Dai Y, Cen Q, Wang L, Zhou Y, Yin F, Dai J, Li J, Xu K 2015 Opt. Express 23 31936  Google Scholar Google Scholar[19] Wang L, Dai Y, Zhou Y, Yin F, Dai J, Li J, Xu K 2015 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (Santa Barbara: IEEE) p40 [20] Chtioui M, Lelarge F, Enard A, Pommereau F, Carpentier D, Marceaux A, Dijk F, Achouche M 2011 IEEE Photonics Technol. Lett. 24 318 [21] Li J, Xiong B, Sun C, Miao D, Luo Y 2015 Opt. Express 23 21615  Google Scholar Google Scholar[22] Jung K, Kim J. 2012 Opt. Lett. 37 2958  Google Scholar Google Scholar[23] Lessing M, Margolis H S, Brown C T A, Gill P, Marra G 2013 Opt. Express 21 27057  Google Scholar Google Scholar[24] Jung K, Shin J, Kang J, Hunziker S, Min C K, Kim J 2014 Opt. Lett. 39 1577  Google Scholar Google Scholar[25] Lu X, Zhang S, Jeon C G, Kang C S, Kim J, Shi K 2018 Opt. Lett. 43 1447  Google Scholar Google Scholar[26] Lu X, Zhang S, Chen X, Kwon D, Jeon C G, Zhang Z, Kim J, Shi K 2017 Sci. Rep. 7 13305  Google Scholar Google Scholar[27] Cao S, Lin B, Yuan X, Fang Z 2020 Opt. Commun. 478 126376 [28] 崔佳华, 林百科, 孟飞, 曹士英, 杨明哲, 林弋戈, 宋有建, 胡明列, 方占军 2020 红外与毫米波学报 39 25 Cui J, Lin B, Meng F, Cao S, Yang M, Lin Y, Song J, Hu M, Fang Z 2020 Infrared Millim. W. 39 25 (in Chinese) [29] Zobel J W, Giunta M, Goers A J, Schmid L R, Reeves J, Holzwarth R, Adles E J 2019 IEEE Photonics Technol. Lett. 31 1323  Google Scholar Google Scholar
- 
				
    
    
图 1 FLOM-PD原理图. 其中, Circulator为保偏光纤环形器, PM EOM为保偏光纤电光调制器, QWP为1/4波片, FR为法拉第旋光镜, HWP为1/2波片, 3 dB coupler为2 × 2的3 dB保偏光纤耦合器, BPD为平衡光电探测器 Fig. 1. Schematic diagram of FLOM-PD. Circulator represents polarization-maintaining fiber circulator; PM EOM represents polarization-maintainingelectro-optic modulator; QWP represents quarter-wave plates; FR represents faraday rotators; HWP represents half-wave plate; 3 dB coupler represents 2 × 2 3 dB polarization-maintaining fiber coupler; BPD represents balanced photodetector. 图 2 窄线宽光学频率梳原理图 (a)超稳激光系统; (b)飞秒光学频率梳. 其中, CW laser为连续激光, PID为比例-积分-微分控制器, PD为光电探测器, AOM为声光调制器, PZT为压电位移器 Fig. 2. Schematic diagram ofnarrowlinewidth optical frequency comb: (a) Ultra-stable laser system; (b) optical frequency comb. CW laser represents continuous-wave laser, PID represents proportional-integral-differentialcontroller, PD represents photodetector, AOM represents acousto-optical modulator, PZT represents piezoelectric transducer. 图 3 基于FLOM-PD和光学频率梳的光学-微波同步方案 (a) 光学-微波同步装置; (b)环外相位噪声测量装置. 其中, EDFA为掺铒光纤放大器, PBS为偏振光束分束器, Coupler为保偏光纤耦合器, Circulator为保偏光纤环形器, VOA为可调光学衰减器, BPD为平衡光电探测器, PIC为比例积分控制器, DRO为介质振荡器, Power divider为微波功率分配器, FFT为快速傅里叶变换分析仪 Fig. 3. Optical-microwave synchronization scheme based on FLOM-PD and optical frequency comb. (a) Optical-microwave synchronization setup; (b) out-of-loop phase noise measurement setup. EDFA represents erbium-doped fiber amplifiers, PBS represents polarization beam splitter, Coupler represents polarization-maintaining fiber coupler, Circulator represents polarization-maintainingfiber circulator, VOA represents variable optical attenuators, BPD represents balanced photodetector, PIC represents proportional-integral controller, DRO represents dielectric resonator oscillator, Power divider represents microwave power divider, FFT represents fast Fourier transform analyzer. 图 4 微波性能表征方案. 其中, CW Laser为连续激光, DRO为介质振荡器, PIC为比例积分控制器, LPF为低通滤波器, LNA为低噪声放大器. Fig. 4. Microwave performance characterization setup. CW laser represents continuous-wave laser, DRO represents dielectric resonator oscillator, PIC represents proportional-integral controller, LPF represents lowpass filter, LNA represents low noise amplifier. 图 5 FLOM-PD及锁相系统的噪声测量方案.其中, CW Laser为连续激光, DRO为介质振荡器, PIC为比例积分控制器, LPF为低通滤波器, Phase shifter为微波相移器 Fig. 5. Phase noise characterization setup of FLOM-PDandphase-lock system. CW laser represents continuous-wave laser, DRO represents dielectric resonator oscillator, PIC represents proportional-integral controller, LPF represents lowpass filter, Phase shifter represents microwave phase shifter. 
- 
				
[1] Capmany J, Novak D 2007 Nat. Photon. 1 319  Google Scholar Google Scholar[2] Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guéna J, Clairon A, Tobar M E, Bize S, Le Coq Y, Santarelli G 2009 Appl. Phys. Lett. 94 141105  Google Scholar Google Scholar[3] Kim J, Cox J A, Chen J, Kärtner F X 2008 Nat. Photon. 2 733  Google Scholar Google Scholar[4] Doeleman S 2009 Frequency Standards and Metrology-Proceedings of the 7th Symposium (PacificGrove: World Scientific) p175 [5] Francois B, Calosso C E, Danet J M, Boudot R 2014 Rev. Sci. Instrum. 85 094709  Google Scholar Google Scholar[6] Grop S, Bourgeois P Y, Boudot R, Kersalé Y, Rubiola E, Giordano V 2010 Electron. Lett. 46 420  Google Scholar Google Scholar[7] Maleki L 2011 Nat. Photon. 5 728  Google Scholar Google Scholar[8] Giordano V, Grop S, Fluhr C, Dubois B, KersaléY, Rubiola E 2015 8th Symposium on Frequency Standards and Metrology (Potsdam: IOP Publishing Ltd), p012030 [9] Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667  Google Scholar Google Scholar[10] Xie X, Bouchand R, Nicolodi D, Giunta M, Hänsel W, Lezius M, Joshi A, Datta S, Alexandre C, L Michel, Tremblin P, Santarelli G, Holzwarth R, Le Coq Y 2017 Nat. Photon. 11 44  Google Scholar Google Scholar[11] Didier A, Millo J, Grop S, Dubois B, Bigler E, Rubiola E, Lacroûte C, Kersalé Y 2015 Appl. Opt. 54 3682  Google Scholar Google Scholar[12] Ivanov E N, Diddams S A, Hollberg L 2003 IEEE J. Sel. Top. Quantum Electron. 9 1059  Google Scholar Google Scholar[13] Ivanov E N, Diddams S A, Hollberg L 2005 IEEE Trans. Sonics Ultrason. 52 1068  Google Scholar Google Scholar[14] Wu K, Shum P P, Aditya S, Ouyang C, Wong J H, Lam H Q, Lee K E K 2011 J. Lightwave Technol. 29 3622  Google Scholar Google Scholar[15] Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Le Coq Y, Santarelli G 2011 Opt. Lett. 36 3654  Google Scholar Google Scholar[16] Jiang H, Taylor J, Quinlan F, Fortier T, Diddams S A 2011 IEEE Photonics J. 3 1004  Google Scholar Google Scholar[17] Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X, Campbell J C, McGrew W F, Zhang X, Hassan Y S, Nicolodi D, Beloy K, Ludlow A D, Diddams S A, Quinlan F 2020 Science 368 889  Google Scholar Google Scholar[18] Dai Y, Cen Q, Wang L, Zhou Y, Yin F, Dai J, Li J, Xu K 2015 Opt. Express 23 31936  Google Scholar Google Scholar[19] Wang L, Dai Y, Zhou Y, Yin F, Dai J, Li J, Xu K 2015 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (Santa Barbara: IEEE) p40 [20] Chtioui M, Lelarge F, Enard A, Pommereau F, Carpentier D, Marceaux A, Dijk F, Achouche M 2011 IEEE Photonics Technol. Lett. 24 318 [21] Li J, Xiong B, Sun C, Miao D, Luo Y 2015 Opt. Express 23 21615  Google Scholar Google Scholar[22] Jung K, Kim J. 2012 Opt. Lett. 37 2958  Google Scholar Google Scholar[23] Lessing M, Margolis H S, Brown C T A, Gill P, Marra G 2013 Opt. Express 21 27057  Google Scholar Google Scholar[24] Jung K, Shin J, Kang J, Hunziker S, Min C K, Kim J 2014 Opt. Lett. 39 1577  Google Scholar Google Scholar[25] Lu X, Zhang S, Jeon C G, Kang C S, Kim J, Shi K 2018 Opt. Lett. 43 1447  Google Scholar Google Scholar[26] Lu X, Zhang S, Chen X, Kwon D, Jeon C G, Zhang Z, Kim J, Shi K 2017 Sci. Rep. 7 13305  Google Scholar Google Scholar[27] Cao S, Lin B, Yuan X, Fang Z 2020 Opt. Commun. 478 126376 [28] 崔佳华, 林百科, 孟飞, 曹士英, 杨明哲, 林弋戈, 宋有建, 胡明列, 方占军 2020 红外与毫米波学报 39 25 Cui J, Lin B, Meng F, Cao S, Yang M, Lin Y, Song J, Hu M, Fang Z 2020 Infrared Millim. W. 39 25 (in Chinese) [29] Zobel J W, Giunta M, Goers A J, Schmid L R, Reeves J, Holzwarth R, Adles E J 2019 IEEE Photonics Technol. Lett. 31 1323  Google Scholar Google Scholar
计量
- 文章访问数: 8668
- PDF下载量: 220
- 被引次数: 0


 
					 
		         
	         
  
					 
										





 
							 下载:
下载: 
				 
							 
							 
							 
							 
							 
							 
							