搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于KTP晶体的斯塔克啁啾快速绝热通道波长转换

万婷 程栋 张翰达 陈长水

引用本文:
Citation:

基于KTP晶体的斯塔克啁啾快速绝热通道波长转换

万婷, 程栋, 张翰达, 陈长水

Wavelength conversion of KTP crystal based Stark-chirped rapid adiabatic passage

Wan Ting, Cheng Dong, Zhang Han-Da, Chen Chang-Shui
PDF
HTML
导出引用
  • 通过近似类比原子绝热布居理论, 建立了基于KTP晶体的斯塔克啁啾快速绝热通道理论的波长转换模型, 系统研究了晶体耦合调制中的耦合迟延参数和宽度参数、泵浦强度、温度、入射波长等因素对转换效率的影响. 结果表明在KTP晶体中能实现入射光能量到出射光能量近乎完全的转换, 同时转换过程中中间光能量保持极低. 离最优晶体耦合调制参数越远, 转换效率越低. 转换效率先随泵浦强度的增大不断增大, 当转换效率达到最大值, 增大泵浦强度对转换效率几乎无影响. 温度和入射波长的变化对转换效率影响较小. 研究结果表明基于KTP晶体的斯塔克啁啾快速绝热通道理论的波长转换具有很好的鲁棒性. 该研究可为紫外到中红外光源的获取以及光子器件的制造提供理论依据.
    The nonlinear wavelength conversion can generate the laser wavelengths which are not directly available, thereby broadening the laser spectrum range. However, the phase mismatch greatly limits the development and application of nonlinear optical technology. The wavelength conversion schemes in a manner analogous to population transfer in atomic rapid adiabatic passage, stimulated Raman adiabatic passage (STIRAP), and Stark chirped rapid adiabatic passage (SCRAP) provide feasible solutions for efficient and broadband wavelength conversion. The SCRAP uses the Stark shift caused by the Stark field to generate energy level crossings, therefore, the population in initial state can be efficiently converted into the target state. It does not require the two-photon resonance, and can be applied to multi-photon transition. In this paper, by approximate analogy to the adiabatic population theory, a wavelength conversion model with the KTP crystals based SCRAP is established, the influence of the coupling delay parameters, width parameters, pump intensity, temperature, and incident wavelength on the conversion process are systematically studied. The results show that the signal laser energy can be almost converted into output laser energy, while the intermediate laser energy is kept extremely low in the conversion process. The conversion process is sensitive to changes in coupling delay parameters, width parameters, and pump intensity. The farther away fromits optimal value the coupling delay parameter, the lower the conversion efficiency is. When the width parameter $ d_2^2 $ is fixed, as the width parameter $ d_1^2 $ increases, the conversion efficiency first increases to a maximum value, and then slowly decreases. At the same time, the greater the value of the width parameter $ d_2^2 $, the greater the achievable maximum conversion efficiencies, and the greater the bandwidth that can achieve high-efficiency wavelength conversion. The conversion efficiency increases as the pump intensity increases. When the conversion efficiency value reaches a maximum value, the increase in pump intensity has almost no effect on the conversion efficiency. However, changes in temperature and incident wavelength have little effect on the conversion efficiency. The above research can provide a theoretical basis for the acquisition of ultraviolet to mid-infrared light sources and the manufacture of photonic devices.
      通信作者: 陈长水, cschen@aiofm.ac.cn
    • 基金项目: 广东省自然科学基金 (批准号: 2015A030313383) 资助的课题
      Corresponding author: Chen Chang-Shui, cschen@aiofm.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313383)
    [1]

    Stolen R H, Bjorkholm J E, Ashkin A 1974 Appl. Phys. Lett. 24 308Google Scholar

    [2]

    Chang J H, Mao Q H, Feng S J, Gao X M, Xu C Q 2010 Opt. Lett. 35 3486Google Scholar

    [3]

    Zhong H Z, Zhang L F, Li Y, Fan D Y 2015 Sci. Rep. 5 10887Google Scholar

    [4]

    Margules P, Moses J, Suchowski H, Porat G 2021 J. Phys. Photonics 3 022011Google Scholar

    [5]

    Sasaki Y, Yuri A, Kawase K, Ito H 2002 Appl. Phys. Lett. 81 3323Google Scholar

    [6]

    Huang J T, Rao Z M, Xie F S 2019 Opt. Express 27 17199Google Scholar

    [7]

    Li Y Y, Yesharim O, Hurvitz I, Karnieli A, Fu S H, Porat G, Arie A 2020 Phys. Rev. A 101 033807Google Scholar

    [8]

    Chen B Q, Zhang C, Hu C Y, Liu R J, Li Z Y 2015 Phys. Rev. Lett. 115 083902Google Scholar

    [9]

    Chen B Q, Hong L H, Hu C Y, Zhang C, Liu R J, Li Z Y 2018 J. Opt. 20 034009Google Scholar

    [10]

    Suchowski H, Oron D, Arie A, Silberberg Y 2008 Phys. Rev. A 78 063821Google Scholar

    [11]

    Ding X Y, Heberle D, Harrington K, Flemens N, Chang W Z, Birks T A, Moses J 2020 Phys. Rev. Lett. 124 153902Google Scholar

    [12]

    Ding X Y, Habib M S, Amezcua-Correa R, Moses J 2019 Opt. Lett. 44 1084Google Scholar

    [13]

    Bahar E, Ding X Y, Dahan A, Suchowski H, Moses J 2018 Opt. Express 26 25582Google Scholar

    [14]

    Mrejen M, Erlich Y, Levanon A, Suchowski H 2020 Laser Photonics Rev. 14 2000040Google Scholar

    [15]

    Porat G, Arie A 2012 J. Opt. Soc. Am. B 29 2901Google Scholar

    [16]

    Porat G, Silberberg Y, Arie A, Suchowski H 2012 Opt. Express 20 3613Google Scholar

    [17]

    Rickes T, Marangos J P, Halfmann T 2003 Opt. Commun. 227 133Google Scholar

    [18]

    Oberst M, Klein J, Halfmann T 2006 Opt. Commun. 264 463Google Scholar

    [19]

    Wang T F, Li J F, Zhou W H, Chen C S 2018 Appl. Phys. Express 11 122202Google Scholar

    [20]

    Wang T F, Wan T, Zhou W H, Chen C S 2019 J. Opt. Soc. Am. B 36 1958Google Scholar

    [21]

    Rangelov A A, Vitanov N V, Yatsenko L P, Shore B W, Halfmann T, Bergmann K 2005 Phys. Rev. A 72 053403Google Scholar

    [22]

    Yatsenko L P, Shore B W, Halfmann T, Bergmann K, Vardi A 1999 Phys. Rev. A 60 R4237Google Scholar

    [23]

    Viedma D, Ahufinger V, Mompart J 2021 Opt. Express 29 39200Google Scholar

    [24]

    Vitanov N V, Rangelov A A, Shore B W, Bergmann K 2017 Rev. Mod. Phys. 89 015006Google Scholar

    [25]

    Mizuuchi K, Yamamoto K, Kato M, Sato H 1994 IEEE J. Quantum Electron. 30 1596Google Scholar

    [26]

    Guo H C, Tang S H, Qin Y Q, Zhu Y Y 2005 Phys. Rev. E 71 066615Google Scholar

    [27]

    Wei J X, Chen C S 2013 Opt. Commun. 311 380Google Scholar

    [28]

    Wei J X, Chen C S, Jiang H, Li W, Han T 2013 Phys. Rev. A 88 023806Google Scholar

    [29]

    Sun C, Chen C S, Wei J X, Li P P 2014 IEEE Photon. J. 6 6100607

    [30]

    Xu L, Chen C S, Zhao X Y, Liu T, Hu H 2015 Laser Phys. 25 125404Google Scholar

    [31]

    Li F J, Zhang Z H, Wan T, Zhang H D, Chen C S 2022 Opt. Commun. 502 127427Google Scholar

    [32]

    Shur V Y, Pelegova E V, Akhmatkhanov A R, Baturin I S 2016 Ferroelectrics 496 49Google Scholar

    [33]

    Suchowski H, Porat G, Arie A 2014 Laser Photonics Rev. 8 333Google Scholar

    [34]

    Chou M H, Parameswaran K R, Fejer M M, Brener I 1999 Opt. Lett. 24 1157Google Scholar

    [35]

    Chen X F, Wu F, Zeng X L, Chen Y P, Xia Y X, Chen Y L 2004 Phys. Rev. A 69 013818Google Scholar

    [36]

    Reshak A H, Kityk I V, Auluck S 2010 J. Phys. Chem. B 114 16705Google Scholar

    [37]

    Hu X P, Xu P, Zhu S N 2013 Photonics Res. 1 171Google Scholar

  • 图 1  (a)$ \Lambda $型三态量子系统; (b) 级联TWM过程示意图

    Fig. 1.  (a) Schematic of the $ \Lambda $-type three-state quantum system; (b) the diagram of the cascaded TWM.

    图 2  (a)三波长强度随传播长度的变化; (b)耦合系数调制随传播长度的变化

    Fig. 2.  (a) Intensities of the three wavelengths varies with the propagation length; (b) the coupling-coefficients modulation along the propagation length.

    图 3  (a)耦合迟延参数对转换效率的影响; (b)耦合迟延参数为$ {s_1} $ = –0.011 m, $ {s_2} $ = 0.006 m时三波长强度随传播长度的变化情况

    Fig. 3.  (a) The conversion efficiency as a function of the coupling delay parameters; (b) the three wavelengths vary with propagation length when the coupling delay parameters are $ {s_1} $ = –0.011 m, $ {s_2} $ = 0.006 m.

    图 4  (a)宽度参数$ d_1^2 $, $ d_2^2 $对转换效率的影响; (b)泵浦强度$ {I_\text{p1}} $, $ {I_\text{p2}} $对转换效率的影响

    Fig. 4.  (a) The conversion efficiency as a function of the width parameters $ d_1^2 $ and $ d_2^2 $; (b) the conversion efficiency as a function of the pump intensities $ {I_\text{p1}} $ and $ {I_\text{p2}} $.

    图 5  (a)温度对转换效率的影响; (b)入射波长对转换效率的影响

    Fig. 5.  (a) The conversion efficiency varies with the temperature; (b) the conversion efficiency varies with the signal wavelength.

    Baidu
  • [1]

    Stolen R H, Bjorkholm J E, Ashkin A 1974 Appl. Phys. Lett. 24 308Google Scholar

    [2]

    Chang J H, Mao Q H, Feng S J, Gao X M, Xu C Q 2010 Opt. Lett. 35 3486Google Scholar

    [3]

    Zhong H Z, Zhang L F, Li Y, Fan D Y 2015 Sci. Rep. 5 10887Google Scholar

    [4]

    Margules P, Moses J, Suchowski H, Porat G 2021 J. Phys. Photonics 3 022011Google Scholar

    [5]

    Sasaki Y, Yuri A, Kawase K, Ito H 2002 Appl. Phys. Lett. 81 3323Google Scholar

    [6]

    Huang J T, Rao Z M, Xie F S 2019 Opt. Express 27 17199Google Scholar

    [7]

    Li Y Y, Yesharim O, Hurvitz I, Karnieli A, Fu S H, Porat G, Arie A 2020 Phys. Rev. A 101 033807Google Scholar

    [8]

    Chen B Q, Zhang C, Hu C Y, Liu R J, Li Z Y 2015 Phys. Rev. Lett. 115 083902Google Scholar

    [9]

    Chen B Q, Hong L H, Hu C Y, Zhang C, Liu R J, Li Z Y 2018 J. Opt. 20 034009Google Scholar

    [10]

    Suchowski H, Oron D, Arie A, Silberberg Y 2008 Phys. Rev. A 78 063821Google Scholar

    [11]

    Ding X Y, Heberle D, Harrington K, Flemens N, Chang W Z, Birks T A, Moses J 2020 Phys. Rev. Lett. 124 153902Google Scholar

    [12]

    Ding X Y, Habib M S, Amezcua-Correa R, Moses J 2019 Opt. Lett. 44 1084Google Scholar

    [13]

    Bahar E, Ding X Y, Dahan A, Suchowski H, Moses J 2018 Opt. Express 26 25582Google Scholar

    [14]

    Mrejen M, Erlich Y, Levanon A, Suchowski H 2020 Laser Photonics Rev. 14 2000040Google Scholar

    [15]

    Porat G, Arie A 2012 J. Opt. Soc. Am. B 29 2901Google Scholar

    [16]

    Porat G, Silberberg Y, Arie A, Suchowski H 2012 Opt. Express 20 3613Google Scholar

    [17]

    Rickes T, Marangos J P, Halfmann T 2003 Opt. Commun. 227 133Google Scholar

    [18]

    Oberst M, Klein J, Halfmann T 2006 Opt. Commun. 264 463Google Scholar

    [19]

    Wang T F, Li J F, Zhou W H, Chen C S 2018 Appl. Phys. Express 11 122202Google Scholar

    [20]

    Wang T F, Wan T, Zhou W H, Chen C S 2019 J. Opt. Soc. Am. B 36 1958Google Scholar

    [21]

    Rangelov A A, Vitanov N V, Yatsenko L P, Shore B W, Halfmann T, Bergmann K 2005 Phys. Rev. A 72 053403Google Scholar

    [22]

    Yatsenko L P, Shore B W, Halfmann T, Bergmann K, Vardi A 1999 Phys. Rev. A 60 R4237Google Scholar

    [23]

    Viedma D, Ahufinger V, Mompart J 2021 Opt. Express 29 39200Google Scholar

    [24]

    Vitanov N V, Rangelov A A, Shore B W, Bergmann K 2017 Rev. Mod. Phys. 89 015006Google Scholar

    [25]

    Mizuuchi K, Yamamoto K, Kato M, Sato H 1994 IEEE J. Quantum Electron. 30 1596Google Scholar

    [26]

    Guo H C, Tang S H, Qin Y Q, Zhu Y Y 2005 Phys. Rev. E 71 066615Google Scholar

    [27]

    Wei J X, Chen C S 2013 Opt. Commun. 311 380Google Scholar

    [28]

    Wei J X, Chen C S, Jiang H, Li W, Han T 2013 Phys. Rev. A 88 023806Google Scholar

    [29]

    Sun C, Chen C S, Wei J X, Li P P 2014 IEEE Photon. J. 6 6100607

    [30]

    Xu L, Chen C S, Zhao X Y, Liu T, Hu H 2015 Laser Phys. 25 125404Google Scholar

    [31]

    Li F J, Zhang Z H, Wan T, Zhang H D, Chen C S 2022 Opt. Commun. 502 127427Google Scholar

    [32]

    Shur V Y, Pelegova E V, Akhmatkhanov A R, Baturin I S 2016 Ferroelectrics 496 49Google Scholar

    [33]

    Suchowski H, Porat G, Arie A 2014 Laser Photonics Rev. 8 333Google Scholar

    [34]

    Chou M H, Parameswaran K R, Fejer M M, Brener I 1999 Opt. Lett. 24 1157Google Scholar

    [35]

    Chen X F, Wu F, Zeng X L, Chen Y P, Xia Y X, Chen Y L 2004 Phys. Rev. A 69 013818Google Scholar

    [36]

    Reshak A H, Kityk I V, Auluck S 2010 J. Phys. Chem. B 114 16705Google Scholar

    [37]

    Hu X P, Xu P, Zhu S N 2013 Photonics Res. 1 171Google Scholar

  • [1] 王伟, 左玉婷, 董婷婷, 朱维震, 林天旭, 徐海东, 卿源, 韩颖, 齐跃峰, 侯蓝田. 飞秒脉冲抽运掺镱微结构光纤产生超连续谱的实验研究.  , 2019, 68(13): 134206. doi: 10.7498/aps.68.20182051
    [2] 李建设, 李曙光, 赵原源, 刘强, 范振凯, 王光耀. 在单零色散微结构光纤中一次抽运同时发生两组四波混频的实验观察.  , 2016, 65(21): 214201. doi: 10.7498/aps.65.214201
    [3] 赵佳, 崔明启, 赵屹东, 周克瑾, 郑雷, 朱杰, 孙立娟, 陈凯, 马陈燕. KTP(001)晶体分光性能研究.  , 2011, 60(6): 066102. doi: 10.7498/aps.60.066102
    [4] 闫晓娟, 李志新, 张永智, 王乐, 胡志裕, 马维光, 张雷, 尹王保, 贾锁堂. 基于KTP键合晶体的Hansch-Couillaud双波长外腔频率锁定机理.  , 2011, 60(10): 104210. doi: 10.7498/aps.60.104210
    [5] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究.  , 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [6] 张秋慧, 冯国英, 韩敬华, 李彬厚, 谢旭东, 朱启华. 以一定重复频率工作的KTP倍频效率的演化规律.  , 2010, 59(8): 5533-5540. doi: 10.7498/aps.59.5533
    [7] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究.  , 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [8] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换.  , 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [9] 安 义, 王云才, 张明江, 牛生晓, 王安帮. 基于Fabry-Perot半导体激光器实现全光波长转换及其最优纵模选择.  , 2008, 57(8): 4995-5000. doi: 10.7498/aps.57.4995
    [10] 王 健, 孙军强, 郭永娟, 李 婧, 孙琪真. 新型双环腔结构可调谐全光波长转换器的实验研究.  , 2007, 56(6): 3251-3254. doi: 10.7498/aps.56.3251
    [11] 贾新鸿, 钟东洲, 王 飞, 陈海涛. 基于λ/4相移分布反馈半导体激光器四波混频的THz波长转换特性研究.  , 2007, 56(5): 2637-2646. doi: 10.7498/aps.56.2637
    [12] 董建绩, 张新亮, 付松年, 沈 平, 黄德修. 基于半导体光放大器瞬态交叉相位调制效应的高速反相和同相波长转换的研究.  , 2007, 56(4): 2250-2255. doi: 10.7498/aps.56.2250
    [13] 缪庆元, 黄德修, 张新亮, 余永林, 洪 伟. 集成双波导半导体光放大器光开关实现波长转换的理论研究.  , 2007, 56(2): 902-907. doi: 10.7498/aps.56.902
    [14] 李培丽, 黄德修, 张新亮, 朱光喜. 基于多电极单端耦合半导体光放大器的交叉增益调制型波长转换器.  , 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [15] 周艳微, 叶存云, 林 强, 王育竹. 基于绝热快速通道控制原子布居数及其相干性的研究.  , 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
    [16] 李培丽, 张新亮, 陈 俊, 黄黎蓉, 黄德修. 基于环行腔激光器四波混频型可调谐波长转换的理论研究.  , 2005, 54(3): 1222-1228. doi: 10.7498/aps.54.1222
    [17] 张新亮, 孙军强, 刘德明, 黄德修, 易河清. 基于半导体光放大器的交叉增益型波长转换器转换特性的研究.  , 2000, 49(4): 741-746. doi: 10.7498/aps.49.741
    [18] 刘雪明, 刘 琳, 孙小菡, 张明德. 石英光纤中二次非线性级联波长转换的理论分析.  , 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
    [19] 夏海瑞, 李丽霞, 王继扬. KTP单晶的晶格振动特点.  , 1996, 45(7): 1153-1159. doi: 10.7498/aps.45.1153
    [20] 田亮光, 姜小龙, 李润身, 许顺生, 刘耀岗. KTP晶体中一种特殊缺陷的研究.  , 1991, 40(3): 449-453. doi: 10.7498/aps.40.449
计量
  • 文章访问数:  3567
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-12-15
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回
Baidu
map