搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非水平海底情况下海底地震波时域有限差分数值模拟

王颖 王学锋 周士弘 赵晨 赵俊鹏 杨勇

引用本文:
Citation:

非水平海底情况下海底地震波时域有限差分数值模拟

王颖, 王学锋, 周士弘, 赵晨, 赵俊鹏, 杨勇

Seabed seismic wave simulation by finite difference time domain scheme in marine environment with complex seafloor topography

Wang Ying, Wang Xue-Feng, Zhou Shi-Hong, Zhao Chen, Zhao Jun-Peng, Yang Yong
PDF
HTML
导出引用
  • 研究复杂海洋环境中海底地震波激发及其传播特性, 对海底物理力学特性研究、资源勘探等具有重要的意义. 目前针对时域海底地震波的研究大都局限于水平分层的情况, 而实际的海底地质条件比较复杂, 基于理想环境假设得出的数值解与实际差别较大. 本文在考虑倾斜、隆起等非水平海底模型的情形下, 采用时间2阶精度、空间10阶精度的交错网格有限差分方法, 同时结合多轴完全匹配层边界条件, 对复杂海洋环境下的海底地震波进行时域数值模拟与分析. 利用计算得到的声场时域波形, 分析了复杂海洋环境下海底地震波的传播特性. 结果表明, 采用空间高阶精度的交错网格有限差分方法, 可改善数值计算中的频散问题; 同时采用多轴完全匹配层替代传统的完全匹配层, 解决了液-固介质中远距离声场数值模拟不稳定的问题. 在含倾斜与隆起构造的复杂海底模型中, 海底基岩隆起改变了Scholte波的传播方向, 更有利于在较浅深度处接收到Scholte波.
    The studying of the excitation and propagation characteristics of seabed seismic waves in a complex marine environment is of great significance in investigating seafloor physical and mechanical properties and exploring resources. At present, the research of time-domain seabed seismic waves is mostly restricted in a marine environment with horizontal stratification, but the actual geological conditions of seafloor are relatively complex, and the numerical solutions obtained under ideal assumption are quite different from those in an actual complex environment. To master the propagation characteristics of seabed seismic wave in the environment that is closer to the actual one, a complex and long range model including layers of water, soft mud and bedrocks is designed in the paper, where non-horizontal seafloor topography with a dipping and uplifting structure is considered. The staggered-grid finite difference method with 2nd-order accuracy in time and 10th-order accuracy in space is used to simulate the seabed seismic waves under such a complex marine environment. Meanwhile, multi axial perfectly matched layer is used as an artificial boundary condition to ensure the numerical long-term stability in a liquid-solid medium. Considering the dipping structure, the acoustic signals excited by sources at different positions of the model are compared to determine the favorable style of source excitation for Scholte interface wave receiving. Through the time-domain waveform of the calculated acoustic field, the propagation characteristics of the seabed seismic wave in the complex marine environment are analyzed. The results show that the staggered-grid finite difference method with high-order spatial accuracy can improve the dispersion problem in numerical calculation. The multi-axial perfectly matched layer used to replace the traditional perfectly matched layer can solve the instability problem in the numerical simulation of acoustic field in liquid-solid media for a long range. Through the comparison among the acoustic signal amplitudes excited by sources at different positions, a better performance can be achieved when the source-receiver is placed along the updip direction. In such a case, the acoustic signal is stronger, which is more advantageous to receive and analyze the Scholte interface wave. In the complex seabed model with a dipping and uplifting structure, the uplift of seafloor bedrock changes the propagation direction of Scholte wave, which makes it possible to receive Scholte wave at shallower depth.
      通信作者: 王颖, wangyingcup@163.com
    • 基金项目: 中国科学院前沿科学重点研究项目(批准号: QYZDY-SSW-SLH005)和国家自然科学基金(批准号: 11804362, 11804364)资助的课题
      Corresponding author: Wang Ying, wangyingcup@163.com
    • Funds: Project supported by the Key Research Projects in Frontier Science of Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH005), and the National Natural Science Foundation of China (Grant Nos. 11804362, 11804364)
    [1]

    胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 65 221Google Scholar

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 221Google Scholar

    [2]

    胡常青, 朱玮, 何远清, 文龙贻彬, 杨义勇 2019 导航与控制 18 1Google Scholar

    Hu C Q, Zhu W, He Y Q, WenLong Y B, Yang Y Y 2019 Navi. Ctrl. 18 1Google Scholar

    [3]

    仇浩淼, 夏唐代, 何绍衡, 陈炜昀 2018 67 204302Google Scholar

    Qiu H M, Xia T D, He S H, Chen W Y 2018 Acta Phys. Sin. 67 204302Google Scholar

    [4]

    Scholte J 1947 Geophys. J. Int. 5 120Google Scholar

    [5]

    马琦, 胡文祥, 徐琰锋, 王浩 2017 66 084302Google Scholar

    Ma Q, Hu W X, Xu Y F, Wang H 2017 Acta Phys. Sin. 66 084302Google Scholar

    [6]

    卢再华, 张志宏, 顾建农 2009 声学技术 28 596Google Scholar

    Lu Z H, Zhang Z H, Gu J N 2009 Tech. Acoust. 28 596Google Scholar

    [7]

    卢再华, 张志宏, 顾建农 2011 海军工程大学学报 23 63Google Scholar

    Lu Z H, Zhang Z H, Gu J N 2011 J. Nav. Uni. Eng. 23 63Google Scholar

    [8]

    韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平 2013 62 194301Google Scholar

    Han Q B, Xu S, Xie Z F, Ge R, Wang X, Zhao S Y, Zhu C P 2013 Acta Phys. Sin. 62 194301Google Scholar

    [9]

    左雷, 孟路稳, 金丹, 李静威 2017 海军工程大学学报 29 13Google Scholar

    Zuo L, Meng L W, Jin D, Li J W 2017 J. Nav. Uni. Eng. 29 13Google Scholar

    [10]

    孟路稳, 程广利, 陈亚男, 张明敏 2017 兵工学报 38 319Google Scholar

    Meng L W, Cheng G L, Chen Y N, Zhang M M 2017 Acta Armam. 38 319Google Scholar

    [11]

    卢再华, 张志宏, 顾建农 2007 应用力学学报 24 54Google Scholar

    Lu Z H, Zhang Z H, Gu J N 2007 Chin. J. Appl. Mech. 24 54Google Scholar

    [12]

    卢再华, 张志宏, 顾建农 2014 兵工学报 35 2065Google Scholar

    Lu Z H, Zhang Z H, Gu J N 2014 Acta Armam. 35 2065Google Scholar

    [13]

    任波, 吴强, 张自圃 2017 电子世界 17 19Google Scholar

    Ren B, Wu Q, Zhang Z P 2017 Electron. World 17 19Google Scholar

    [14]

    李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425Google Scholar

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acustica. 28 425Google Scholar

    [15]

    祝捍皓, 郑红, 林建民, 汤云峰, 孔令明 2016 上海交通大学学报 50 257Google Scholar

    Zhu H H, Zheng H, Lin J M, Tang Y F, Kong L M 2016 J. Shanghai Jiaotong Univ. 50 257Google Scholar

    [16]

    孟路稳, 程广利, 罗夏云, 张明敏 2018 哈尔滨工程大学学报 39 384Google Scholar

    Meng L W, Cheng G L, Luo X Y, Zhang M M 2018 J. Harbin Eng. Univ. 39 384Google Scholar

    [17]

    Dai N, Vafidis A, Kanasewich E R 1995 Geophys. 60 327Google Scholar

    [18]

    董良国, 马在田, 曹景忠, 王华忠, 耿建华, 雷兵, 许世勇 2000 地球 43 411Google Scholar

    Dong L G, Ma Z T, Cao J Z, Wang H Z, Geng J H, Lei B, Xu S Y 2000 Chin. J. Geophys. 43 411Google Scholar

    [19]

    Meza-Fajardo K C, Papageorgiou A S 2008 B. Seismol. Soc. Am. 98 1811Google Scholar

    [20]

    Meza-Fajardo K C, Papageorgiou A S 2012 B. Seismol. Soc. Am. 102 2458Google Scholar

    [21]

    王颖, 陈浩 2018 应用声学 37 849Google Scholar

    Wang Y, Chen H 2018 J. Appl. Acoust. 37 849Google Scholar

    [22]

    Bécache E, Fauqueux S, Joly P 2003 J. Comput. Phys. 188 399Google Scholar

    [23]

    Zeng C, Xia J H, Miller R D, Tsoflias G P 2012 Geophysics 77 T1

  • 图 1  半无限空间海洋环境模型

    Fig. 1.  Ocean enviroment model with infinite half-space.

    图 2  空间4阶精度的波形记录和时频分析结果 (a)时域波形; (b)时频分析

    Fig. 2.  Seismogram and frequency domain result by method with 4 th order spatial accuracy: (a) Time domain waveform; (b) Time-frequency analysis.

    图 3  源距5 km深度为50 m的波形记录和频域结果 (a)时域波形, 时间步长为0.1 ms; (b)时频分析, 时间步长为0.1 ms; (c)时域波形, 时间步长为0.05 ms; (d)时频分析, 时间步长为0.05 ms

    Fig. 3.  Seismogram and frequency domain result of offset 5 km and depth 50 m: (a) Time domain waveform, time step is 0.1 ms; (b) Time-frequency analysis, time step is 0.1 ms; (c) Time Domain waveform, time step is 0.05 ms; (d) Time-frequency analysis, time step is 0.05 ms.

    图 4  源距5 km深度为50 m的波形记录和频域结果, 空间网格大小为1 m (a)时域波形; (b)时频分析

    Fig. 4.  Seismogram and frequency domain result of offset 5 km and depth 50 m, with spatial interval 1 m: (a) Time domain waveform; (b) Time-frequency analysis.

    图 5  空间10阶精度的波形记录和频域结果 (a)时域波形; (b)时频分析

    Fig. 5.  Seismogram and frequency domain result by method with 10 th order spatial accuracy: (a) Time domain waveform; (b) Time-frequency analysis.

    图 6  深度50 m处的接收记录 (a) PML; (b) MPML

    Fig. 6.  Record at depth 50 m: (a) PML; (b) MPML.

    图 7  复杂海底模型 (a) 模型及隆起构造放大显示; (b)海水层声速曲线

    Fig. 7.  Model with complex seafloor topography: (a) Whole model and zoomed display of uplift structure; (b) Sound speed profile of sea water.

    图 8  不同界面处的接收记录 (a) 界面1, 震源在左; (b) 界面1, 震源在右; (c) 界面2, 震源在左; (d) 界面2, 震源在右; (e) 界面3, 震源在左; (f) 界面3, 震源在右

    Fig. 8.  Records at different interfaces: (a) Interface 1, the source is on the left; (b) Interface 1, the source is on the right; (c) Interface 2, the source is on the left; (d) Interface 2, the source is on the right; (e) Interface 3, the source is on the left; (f) Interface 3, the source is on the right.

    图 9  不同界面处的接收记录 (a) 界面1, 偏移距 ≤ 50 km; (b) 界面2, 偏移距 ≤ 50 km; (c) 界面1, 偏移距 ≤ 10 km; (d) 界面2, 偏移距 ≤ 10 km

    Fig. 9.  Records at different interfaces: (a) Interface 1, offset ≤ 50 km; (b) Interface 2, offset ≤ 50 km; (c) Interface 1, offset ≤ 10 km; (d) Interface 2, offset ≤ 10 km.

    图 10  隆起处的波形记录 (a) 偏移距9 km; (b) 偏移距8 km; (c) 偏移距7 km; (d) 偏移距6 km

    Fig. 10.  Seismograms at uplit structure: (a) Offset 9 km; (b) Offset 8 km; (c) Offset 7 km; (d) Offset 6 km.

    表 1  含倾斜与隆起的模型参数

    Table 1.  Parameters of model including slope and uplift

    纵波速度
    Vp/(${\text{m} }/{ {\text{s} }}$)
    横波速度
    Vs/(${\text{m} }/{ {\text{s} }^{} }$)
    密度
    ρ/(${\text{kg} }/{ {\text{m} }^{3} }$)
    厚度
    d/m
    海水1480—154001000100—1600
    软泥1600017500—10
    海底
    基岩1
    320018001850100—110
    海底
    基岩2
    400020002000
    下载: 导出CSV
    Baidu
  • [1]

    胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 65 221Google Scholar

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 221Google Scholar

    [2]

    胡常青, 朱玮, 何远清, 文龙贻彬, 杨义勇 2019 导航与控制 18 1Google Scholar

    Hu C Q, Zhu W, He Y Q, WenLong Y B, Yang Y Y 2019 Navi. Ctrl. 18 1Google Scholar

    [3]

    仇浩淼, 夏唐代, 何绍衡, 陈炜昀 2018 67 204302Google Scholar

    Qiu H M, Xia T D, He S H, Chen W Y 2018 Acta Phys. Sin. 67 204302Google Scholar

    [4]

    Scholte J 1947 Geophys. J. Int. 5 120Google Scholar

    [5]

    马琦, 胡文祥, 徐琰锋, 王浩 2017 66 084302Google Scholar

    Ma Q, Hu W X, Xu Y F, Wang H 2017 Acta Phys. Sin. 66 084302Google Scholar

    [6]

    卢再华, 张志宏, 顾建农 2009 声学技术 28 596Google Scholar

    Lu Z H, Zhang Z H, Gu J N 2009 Tech. Acoust. 28 596Google Scholar

    [7]

    卢再华, 张志宏, 顾建农 2011 海军工程大学学报 23 63Google Scholar

    Lu Z H, Zhang Z H, Gu J N 2011 J. Nav. Uni. Eng. 23 63Google Scholar

    [8]

    韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平 2013 62 194301Google Scholar

    Han Q B, Xu S, Xie Z F, Ge R, Wang X, Zhao S Y, Zhu C P 2013 Acta Phys. Sin. 62 194301Google Scholar

    [9]

    左雷, 孟路稳, 金丹, 李静威 2017 海军工程大学学报 29 13Google Scholar

    Zuo L, Meng L W, Jin D, Li J W 2017 J. Nav. Uni. Eng. 29 13Google Scholar

    [10]

    孟路稳, 程广利, 陈亚男, 张明敏 2017 兵工学报 38 319Google Scholar

    Meng L W, Cheng G L, Chen Y N, Zhang M M 2017 Acta Armam. 38 319Google Scholar

    [11]

    卢再华, 张志宏, 顾建农 2007 应用力学学报 24 54Google Scholar

    Lu Z H, Zhang Z H, Gu J N 2007 Chin. J. Appl. Mech. 24 54Google Scholar

    [12]

    卢再华, 张志宏, 顾建农 2014 兵工学报 35 2065Google Scholar

    Lu Z H, Zhang Z H, Gu J N 2014 Acta Armam. 35 2065Google Scholar

    [13]

    任波, 吴强, 张自圃 2017 电子世界 17 19Google Scholar

    Ren B, Wu Q, Zhang Z P 2017 Electron. World 17 19Google Scholar

    [14]

    李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425Google Scholar

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acustica. 28 425Google Scholar

    [15]

    祝捍皓, 郑红, 林建民, 汤云峰, 孔令明 2016 上海交通大学学报 50 257Google Scholar

    Zhu H H, Zheng H, Lin J M, Tang Y F, Kong L M 2016 J. Shanghai Jiaotong Univ. 50 257Google Scholar

    [16]

    孟路稳, 程广利, 罗夏云, 张明敏 2018 哈尔滨工程大学学报 39 384Google Scholar

    Meng L W, Cheng G L, Luo X Y, Zhang M M 2018 J. Harbin Eng. Univ. 39 384Google Scholar

    [17]

    Dai N, Vafidis A, Kanasewich E R 1995 Geophys. 60 327Google Scholar

    [18]

    董良国, 马在田, 曹景忠, 王华忠, 耿建华, 雷兵, 许世勇 2000 地球 43 411Google Scholar

    Dong L G, Ma Z T, Cao J Z, Wang H Z, Geng J H, Lei B, Xu S Y 2000 Chin. J. Geophys. 43 411Google Scholar

    [19]

    Meza-Fajardo K C, Papageorgiou A S 2008 B. Seismol. Soc. Am. 98 1811Google Scholar

    [20]

    Meza-Fajardo K C, Papageorgiou A S 2012 B. Seismol. Soc. Am. 102 2458Google Scholar

    [21]

    王颖, 陈浩 2018 应用声学 37 849Google Scholar

    Wang Y, Chen H 2018 J. Appl. Acoust. 37 849Google Scholar

    [22]

    Bécache E, Fauqueux S, Joly P 2003 J. Comput. Phys. 188 399Google Scholar

    [23]

    Zeng C, Xia J H, Miller R D, Tsoflias G P 2012 Geophysics 77 T1

  • [1] 何欣波, 魏兵. 基于悬挂变量的显式无条件稳定时域有限差分亚网格算法.  , 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [2] 王龙昊, 秦继兴, 傅德龙, 李整林, 刘建军, 翁晋宝. 深海大接收深度海底混响研究.  , 2019, 68(13): 134303. doi: 10.7498/aps.68.20181883
    [3] 李梦竹, 李整林, 周纪浔, 张仁和. 一种低声速沉积层海底参数声学反演方法.  , 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [4] 周聪, 王庆良. 考虑频散效应的一维非线性地震波数值模拟.  , 2015, 64(23): 239101. doi: 10.7498/aps.64.239101
    [5] 段晓亮, 王一博, 杨慧珠. 基于逆散射理论的地震波速度正则化反演.  , 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [6] 丁卫, 吴文雯, 王驰, 吴智强. 用非饱和三相孔弹模型研究浅层土壤中地震波的传播特性.  , 2014, 63(22): 224301. doi: 10.7498/aps.63.224301
    [7] 刘亚文, 陈亦望, 徐鑫, 刘宗信. 基于辅助差分方程的完全匹配层在时域多分辨率分析算法中的应用与性能分析.  , 2013, 62(3): 034101. doi: 10.7498/aps.62.034101
    [8] 方刚, 张斌. 弹性介质的Lagrange动力学与地震波方程.  , 2013, 62(15): 154502. doi: 10.7498/aps.62.154502
    [9] 屈科, 胡长青, 赵梅. 利用时域波形快速反演海底单参数的方法.  , 2013, 62(22): 224303. doi: 10.7498/aps.62.224303
    [10] 韩海英, 那仁满都拉, 双山. 具微结构地壳中非线性地震波的演化.  , 2012, 61(5): 059101. doi: 10.7498/aps.61.059101
    [11] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究.  , 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [12] 高博, 杨士莪, 朴胜春. 基于信道传播理论的多基地远程海底混响研究.  , 2012, 61(5): 054305. doi: 10.7498/aps.61.054305
    [13] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法.  , 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [14] 邓争志, 黄虎. 表面张力-重力短峰波作用的海底边界层速度二阶解.  , 2010, 59(2): 735-739. doi: 10.7498/aps.59.735
    [15] 李红星, 陶春辉. 双相各向异性随机介质伪谱法地震波场特征分析.  , 2009, 58(4): 2836-2842. doi: 10.7498/aps.58.2836
    [16] 杨光杰, 孔凡敏, 李 康, 梅良模. 金属介质在时域有限差分中的几种处理方法.  , 2007, 56(7): 4252-4255. doi: 10.7498/aps.56.4252
    [17] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析.  , 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [18] 杜启振, 刘莲莲, 孙晶波. 各向异性粘弹性孔隙介质地震波场伪谱法正演模拟.  , 2007, 56(10): 6143-6149. doi: 10.7498/aps.56.6143
    [19] 马坚伟, 杨慧珠, 朱亚平. 多尺度有限差分法模拟复杂介质波传问题.  , 2001, 50(8): 1415-1420. doi: 10.7498/aps.50.1415
    [20] 齐国英, 郭亚平. 地震波谱与大地震前后中强地震波谱变化.  , 1976, 25(6): 527-532. doi: 10.7498/aps.25.527
计量
  • 文章访问数:  4207
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 修回日期:  2021-07-01
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回
Baidu
map