搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

皮秒激光驱动下的背向受激布里渊散射的光谱结构

王琛 安红海 熊俊 方智恒 季雨 练昌旺 谢志勇 郭尔夫 贺芝宇 曹兆栋 王伟 闫锐 裴文兵

引用本文:
Citation:

皮秒激光驱动下的背向受激布里渊散射的光谱结构

王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵

Spectral structures of backward stimulated Brillouin scattering driven by a picosecond laser

Wang Chen, An Hong-Hai, Xiong Jun, Fang Zhi-Heng, Ji Yu, Lian Chang-Wang, Xie Zhi-Yong, Guo Er-Fu, He Zhi-Yu, Cao Zhao-Dong, Wang Wei, Yan Rui, Pei Wen-Bing
PDF
HTML
导出引用
  • 激光等离子体相互作用(LPI)是激光等离子体相关研究中的重要内容, 皮秒激光的出现为在皮秒时间尺度内更加细致地研究LPI过程提供了可能. LPI相关的时间尺度通常是皮秒量级的, 这一研究有望从更精细的角度来获得认识. 依托神光-Ⅱ升级及皮秒激光装置, 开展了皮秒激光驱动LPI的实验研究. 实验给出了背向受激布里渊散射(SBS)的积分光谱, 其中除了真正的背向SBS成分, 还包含大量的皮秒激光和纳秒激光引入的干扰信号. 纳秒激光引入的干扰信号可以消除, 但皮秒激光引入的干扰信号无法从实验角度消除, 这势必会影响到对背向SBS真正份额的估计. 结果显示, 在不同的实验条件下, 背向SBS散射能量在总的记录信号中, 占比可能还不到一半. 这一结果有助于对先前相关实验数据的进一步理解和再认识.
    Laser plasma interaction (LPI) is an important content in laser plasma related research, and it is one of the key issues related to the success or failure of inertial confinement fusion ignition, and has received extensive attention. In order to suppress the relevant LPI process as much as possible, the major laboratories around the world have developed a variety of beam smoothing methods through decades of research. However, the current understanding and suppression of LPI are still far from enough, and further in-depth studies are still needed. Generally, the research of LPI is based on nanosecond laser driving, and focuses mainly on the effects of the related LPI process caused by nanosecond lasers. However, the LPI processes, such as stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), etc., occur and develop on a time scale of picoseconds.The comprehensive effect can be studied only on a longer scale of nanosecond. For highly nonlinear LPI processes, the comprehensive effect may be difficult to reflect the real physical laws. The emergence of the picosecond laser has made it possible to study the LPI process in more detail and on a more appropriate time scale. The present research tries to gain an understanding of LPI from a more refined perspective. The experimental research of picosecond laser driving LPI is carried out on the Shenguang-Ⅱ upgrade and picosecond laser facilities. First, a nanosecond laser is used to irradiate a target to generate a large-scale plasma, and a few nanoseconds later, the picosecond laser is injected as an interaction beam to drive the LPI scattering such as SBS and SRS. The spectral signal of backscatter light is measured experimentally by using the method of diffuse reflector. From the research results it is found that the backward signals of the band near the laser wavelength contain, in addition to the true backward SBS component, a large number of interference signals introduced by picosecond laser and nanosecond laser. The interference signal introduced by nanosecond laser can be eliminated by using specific measures, but the interference signal introduced by picosecond laser cannot be eliminated experimentally, which will affect the estimation of the true share of the backward SBS. The comprehensive results show that under different experimental conditions, the backward scatter energy of SBS may be less than half that of the total recorded signals. This result is helpful in further understanding and re-recognizing previous relevant experimental data.
      通信作者: 方智恒, 48224947@qq.com
    • 基金项目: 科学挑战专题(批准号: TZ2016005)资助的课题
      Corresponding author: Fang Zhi-Heng, 48224947@qq.com
    • Funds: Project supported by the Science Challenge Project of China (Grant No. TZ2016005)
    [1]

    Lindl J, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Lindl J, Landen O, Edwards J, Moses E, Team N I C 2014 Phys. Plasmas 21 020501Google Scholar

    [3]

    Cavailler C 2005 Plasma Phys. Controlled Fusion 47 B389Google Scholar

    [4]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [5]

    Hao L, Yan R, Li J, Liu W D, Ren C 2017 Phys. Plasmas 24 062709Google Scholar

    [6]

    Seaton A G, Arber T D 2020 Phys. Plasmas 27 082704Google Scholar

    [7]

    MacGowan B J, Afeyan B B, Back C A, Berger R L, Bonnaud G, Casanova M, Cohen B I, Desenne D E, DuBois D F, Dulieu A G, Estabrook K G, Fernandez J C, Glenzer S H, Hinkel D E, Kaiser T B, Kalantar D H, Kauffman R L, Kirkwood R K, Kruer W L, Langdon A B, Lasinski B F, Montgomery D S, Moody J D, Munro D H, Powers L V, Rose H A, Rousseaux C, Turner R E, Wilde B H, Wilks S C, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar

    [8]

    Maximov V, Myatt J, Seka W, Short R W, Craxton R S 2004 Phys. Plasmas 11 2994Google Scholar

    [9]

    刘占军, 郝亮, 项江, 郑春阳 2012 61 115202Google Scholar

    Liu Z J, Hao L, Xiang J, Zheng C Y 2012 Acta Phys. Sin 61 115202Google Scholar

    [10]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Yin L, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Controlled Fusion 55 103001Google Scholar

    [11]

    Zhao Y, Yu L L, Zheng J, Weng S M, Ren C, Liu C S, Sheng Z M 2015 Phys. Plasmas 22 052119Google Scholar

    [12]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, D’humieres E 2019 Phys. Plasmas 26 042707Google Scholar

    [13]

    Zhao Y, Sheng Z M, Weng S M, Ji S Z, Zhu J Q 2019 High Power Laser Sci. Eng. 7 e20Google Scholar

    [14]

    Ji Y, Lian C W, Yan R, Ren C, Yang D, Wan Z H, Zhao B, Wang C, Fang Z H, Zheng J 2021 Matter Radiat. Extremes 6 015901Google Scholar

    [15]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [16]

    Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. Eng. 3 e3Google Scholar

    [17]

    Baldis H A, Villeneuve D M, Fontaine B L, Enright G D, Labaune C, Baton S, Mounaix Ph, Pesme D, Casanova M, Rozmus W 1993 Phys. Fluids B 5 3319Google Scholar

    [18]

    Baton S D, Rousseaux C, Mounaix P H, Labaune C, Fontaine B La, Pesme D, Renard N, Gary S, Louis-Jacquet M, Baldis H A 1994 Phys. Rev. E 49 R3602Google Scholar

    [19]

    Rousseaux C, Malka G, Miquel J L, Amiranoff F, Baton S D, Mounaix Ph 1995 Phys. Rev. Lett. 74 4655Google Scholar

    [20]

    Rousseaux C, Gremillet L, Casanova M, Loiseau P, Rabec Le Gloahec M, Baton S D, Amiranoff F, Adam J C, Héron A 2006 Phys. Rev. Lett. 97 015001Google Scholar

    [21]

    Rousseaux C, Glize K, Baton S D, Lancia L, Bénisti D, Gremillet L 2016 Phys. Rev. Lett. 117 015002Google Scholar

    [22]

    Rousseaux C, Baton S D, Bénisti D, Gremillet L, Loupias B, Philippe F, Tassin V, Amiranoff F, Kline J L, Montgomery D S, Afeyan B B 2016 Phys. Rev. E 93 043209Google Scholar

    [23]

    Moody J D, Datte P, Krauter K, Bond E, Michel P A, Glenzer S H, Divol L, Niemann C, Suter L, Meezan N, MacGowan B J, Hibbard R, London R, Kilkenny J, Wallace R, Kline J L, Knittel K, Frieders G, Golick B, Ross G, Widmann K, Jackson J, Vernon S, Clancy T 2010 Rev. Sci. Instrum. 81 10D921Google Scholar

  • 图 1  皮秒激光驱动的背向SBS测量方案示意图

    Fig. 1.  Schematic diagram of backward SBS measurement scheme driven by a picosecond laser.

    图 2  实验用靶 (a)三明治结构; (b)光路示意图; (c)焦斑示意图

    Fig. 2.  Schematic diagram of experimental targets: (a) Sandwich structure; (b) target and driving laser; (c) focal spots of lasers.

    图 3  皮秒激光诱发的背向SBS光谱

    Fig. 3.  Integrated spectroscopy of backward SBS induced by a picosecond laser.

    图 4  背向SBS光谱的成分分解 (a)分解为三部分; (b)三部分之和与实验数据比较

    Fig. 4.  Component decomposition of backward SBS spectrum: (a) Decomposed into three parts; (b) sum of the three parts and the experimental data.

    图 5  靶室内激光光束分布示意图 (a)侧视图; (b)俯视图

    Fig. 5.  Schematic diagram of laser beam distribution in the target chamber: (a) Side view; (b) top view.

    图 6  利用第2路作为纳秒激光驱动的背向SBS光谱及成分分解

    Fig. 6.  Component decomposition of backward SBS spectrum driven by 2# nanosecond laser.

    图 7  经过能量归一化的光谱, 分别利用2#和5#纳秒激光

    Fig. 7.  Energy normalized spectra driven by 2# and 5# nanosecond laser respectively.

    表 1  图4中各部分高斯拟合曲线参数

    Table 1.  Gaussian fitting curve parameters of each part in Fig.4.

    峰值高度中心波长半高全宽
    a/countx0/nmτ/nm
    P119761053.40.39
    P221011053.34.4
    P372431050.21.3
    下载: 导出CSV

    表 2  针对图6第2路纳秒激光实验的各部分高斯拟合曲线参数

    Table 2.  Gaussian fitting curve parameters of each part using 2# nanosecond laser shown in Fig.6.

    峰值高度中心波长半高全宽
    a/countx0/nmτ/nm
    P1//////
    P229941053.24.3
    P359991050.11.4
    下载: 导出CSV
    Baidu
  • [1]

    Lindl J, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Lindl J, Landen O, Edwards J, Moses E, Team N I C 2014 Phys. Plasmas 21 020501Google Scholar

    [3]

    Cavailler C 2005 Plasma Phys. Controlled Fusion 47 B389Google Scholar

    [4]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [5]

    Hao L, Yan R, Li J, Liu W D, Ren C 2017 Phys. Plasmas 24 062709Google Scholar

    [6]

    Seaton A G, Arber T D 2020 Phys. Plasmas 27 082704Google Scholar

    [7]

    MacGowan B J, Afeyan B B, Back C A, Berger R L, Bonnaud G, Casanova M, Cohen B I, Desenne D E, DuBois D F, Dulieu A G, Estabrook K G, Fernandez J C, Glenzer S H, Hinkel D E, Kaiser T B, Kalantar D H, Kauffman R L, Kirkwood R K, Kruer W L, Langdon A B, Lasinski B F, Montgomery D S, Moody J D, Munro D H, Powers L V, Rose H A, Rousseaux C, Turner R E, Wilde B H, Wilks S C, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar

    [8]

    Maximov V, Myatt J, Seka W, Short R W, Craxton R S 2004 Phys. Plasmas 11 2994Google Scholar

    [9]

    刘占军, 郝亮, 项江, 郑春阳 2012 61 115202Google Scholar

    Liu Z J, Hao L, Xiang J, Zheng C Y 2012 Acta Phys. Sin 61 115202Google Scholar

    [10]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Yin L, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Controlled Fusion 55 103001Google Scholar

    [11]

    Zhao Y, Yu L L, Zheng J, Weng S M, Ren C, Liu C S, Sheng Z M 2015 Phys. Plasmas 22 052119Google Scholar

    [12]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, D’humieres E 2019 Phys. Plasmas 26 042707Google Scholar

    [13]

    Zhao Y, Sheng Z M, Weng S M, Ji S Z, Zhu J Q 2019 High Power Laser Sci. Eng. 7 e20Google Scholar

    [14]

    Ji Y, Lian C W, Yan R, Ren C, Yang D, Wan Z H, Zhao B, Wang C, Fang Z H, Zheng J 2021 Matter Radiat. Extremes 6 015901Google Scholar

    [15]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [16]

    Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. Eng. 3 e3Google Scholar

    [17]

    Baldis H A, Villeneuve D M, Fontaine B L, Enright G D, Labaune C, Baton S, Mounaix Ph, Pesme D, Casanova M, Rozmus W 1993 Phys. Fluids B 5 3319Google Scholar

    [18]

    Baton S D, Rousseaux C, Mounaix P H, Labaune C, Fontaine B La, Pesme D, Renard N, Gary S, Louis-Jacquet M, Baldis H A 1994 Phys. Rev. E 49 R3602Google Scholar

    [19]

    Rousseaux C, Malka G, Miquel J L, Amiranoff F, Baton S D, Mounaix Ph 1995 Phys. Rev. Lett. 74 4655Google Scholar

    [20]

    Rousseaux C, Gremillet L, Casanova M, Loiseau P, Rabec Le Gloahec M, Baton S D, Amiranoff F, Adam J C, Héron A 2006 Phys. Rev. Lett. 97 015001Google Scholar

    [21]

    Rousseaux C, Glize K, Baton S D, Lancia L, Bénisti D, Gremillet L 2016 Phys. Rev. Lett. 117 015002Google Scholar

    [22]

    Rousseaux C, Baton S D, Bénisti D, Gremillet L, Loupias B, Philippe F, Tassin V, Amiranoff F, Kline J L, Montgomery D S, Afeyan B B 2016 Phys. Rev. E 93 043209Google Scholar

    [23]

    Moody J D, Datte P, Krauter K, Bond E, Michel P A, Glenzer S H, Divol L, Niemann C, Suter L, Meezan N, MacGowan B J, Hibbard R, London R, Kilkenny J, Wallace R, Kline J L, Knittel K, Frieders G, Golick B, Ross G, Widmann K, Jackson J, Vernon S, Clancy T 2010 Rev. Sci. Instrum. 81 10D921Google Scholar

  • [1] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射.  , 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [2] 李天成, 章晓海, 盛正卯. 激光入射双层等离子体靶产生的表面等离子体波及应用.  , 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [3] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究.  , 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] 祝昕哲, 刘维媛, 陈民. 锐真空-等离子体边界倾角对激光尾波场加速中电子注入的影响.  , 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [5] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究.  , 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [6] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究.  , 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [7] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究.  , 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [8] 孟祥富, 王琛, 安红海, 贾果, 方智恒, 周华珍, 孙今人, 王伟, 傅思祖. 驱动激光束间相干性以及对背向散射影响的研究.  , 2012, 61(18): 185202. doi: 10.7498/aps.61.185202
    [9] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应.  , 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [10] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响.  , 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [11] 哈斯乌力吉, 吕志伟, 公 胜, 何伟明, 林殿阳, 张 伟. 受激布里渊散射新介质——全氟胺的研究.  , 2008, 57(10): 6360-6364. doi: 10.7498/aps.57.6360
    [12] 李百文, 田恩科. 强激光与等离子体相互作用中受激陷俘电子声波散射及相空间离子涡旋的形成.  , 2007, 56(8): 4749-4761. doi: 10.7498/aps.56.4749
    [13] 仲佳勇, 李玉同, 鲁 欣, 张 翼, Bernhardt Jens, 刘 峰, 郝作强, 张 喆, 于全芝, 陈 民, 远晓辉, 梁文锡, 赵 刚, 张 杰. 空气中单个激光等离子体通道的形成条件.  , 2007, 56(12): 7114-7119. doi: 10.7498/aps.56.7114
    [14] 陈 立, 毛邦宁, 王煜博, 王丽敏, 潘佰良. 低气压下CuBr激光的光谱结构.  , 2007, 56(10): 5808-5812. doi: 10.7498/aps.56.5808
    [15] 李百文, 郑春阳, 宋 敏, 刘占军. 高强度激光与等离子体相互作用中的受激Raman级联散射、光子凝聚以及大振幅电磁孤立子的产生与加速.  , 2006, 55(10): 5325-5337. doi: 10.7498/aps.55.5325
    [16] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究.  , 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [17] 张家泰, 刘松芬, 胡北来. 强激光部分离化等离子体成丝不稳定性.  , 2003, 52(7): 1668-1671. doi: 10.7498/aps.52.1668
    [18] 张家泰, 许林宝, 常铁强, 张书贵, 聂小波, 王世红, 汪卫星. 激光靶等离子体受激Raman散射.  , 1991, 40(10): 1642-1651. doi: 10.7498/aps.40.1642
    [19] 徐至展, 唐永红, 钱爱娣. 激光等离子体受激布里渊散射光谱的周期性结构——前向散射的间接证据.  , 1988, 37(4): 557-565. doi: 10.7498/aps.37.557
    [20] 徐至展, 殷光裕, 张燕珍, 林康春. 激光等离子体相互作用中的受激布里渊散射.  , 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
计量
  • 文章访问数:  3963
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-05-08
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回
Baidu
map