搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器

盛泉 王盟 史朝督 田浩 张钧翔 刘俊杰 史伟 姚建铨

引用本文:
Citation:

基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器

盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨

High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses

Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan
PDF
HTML
导出引用
  • 报道了基于锯齿波脉冲抑制自相位调制(SPM)的高功率窄线宽单频脉冲光纤激光放大器. 通过优化掺镱(Yb)石英有源光纤的长度, 在保证输出功率和转换效率的同时提高单频光纤激光放大器中的受激布里渊散射阈值, 并采用脉冲波形为锯齿波的种子光, 利用其光强对时间的变化率为常数的特性有效抑制了SPM效应导致的激光光谱展宽现象. 主放大级泵浦功率为11.3 W时获得了平均输出功率为3.13 W、脉冲重复频率为20 kHz的1064 nm单频激光输出; 此时脉冲宽度为6.5 ns, 对应峰值功率为24 kW, 测得光谱线宽仅为83 MHz, 接近变换极限水平. 与采用常规高斯波形脉冲种子光的对照实验相比, 锯齿波形脉冲对SPM所致的光谱展宽具有显著抑制效果, 为高功率窄线宽脉冲光纤激光放大器提供了一种行之有效的方法.
    Fiber laser system in master oscillator power amplifier (MOPA) scheme is a promising technique for high-power narrow-linewidth laser output. With modulation-generated pulsed seed laser, the fiber MOPA benefits the flexible temporal behavior. However, the spectral linewidth broadening induced by self-phase modulation (SPM) is the main obstacle to achieving high-power single-frequency laser output with narrow spectral linewidth, especially for pulsed fiber MOPA in which the kilowatts level peak power results in strong nonlinearity. The SPM induced linewidth broadening is related to the derivative of light intensity with respect to time (dI/dt). Theoretically, if the dI/dt of the laser pulse is a constant, the SPM process will not generate any new frequency components. Hence, the linewidth broadening can be suppressed. In this work, we demonstrate a high-power single-frequency Yb fiber amplifier at 1064 nm, in which a sawtooth laser pulse is employed to suppress the SPM induced linewidth broadening, for obtaining the output with near-transform-limited narrow linewidth. The sawtooth-shaped seed pulse train is generated through using an electro-optic intensity modulator to modulate the continuous-wave (CW) output of a single-frequency fiber laser. After being pre-amplified, the seed laser with a pulse repetition rate of 20 kHz is coupled into the main amplifier, in which a piece of 0.9-m-long Yb-doped silica fiber with core and clad diameters of 35 μm and 250 μm, respectively, is used as a gain medium. The seed laser is enhanced to an average power value of 3.13 W under a launched 976-nm pump power value of 11.3 W before the onset of stimulate Brillouin scattering. The pulse energy 157 μJ and the pulse width 6.5 ns give a peak power of 24 kW. The spectral linewidth measured using a scanning Fabry-Perot interferometer at the maximum power is only 83 MHz, which is quite close to the 76-MHz transform-limited linewidth of the 6.5-ns sawtooth-shaped pulse. For comparison, we also conduct an experiment with a common Gaussian-shaped seed laser, in which the spectral linewidth is broadened significantly with a peak power value of only 1.5 kW. The results here reveal that the using of the sawtooth-shaped pulse is a promising technique to suppress the SPM induced spectral linewidth broadening in high-peak-power fiber amplifiers and acquire near-transform-limited narrow-linewidth laser output.
      通信作者: 史伟, shiwei@tju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFF0104603)、国家自然科学基金(批准号: 61975146, 62075159)和山东省重点研发计划(批准号: 2019JZZY020206)资助的课题
      Corresponding author: Shi Wei, shiwei@tju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFF0104603), the National Natural Science Foundation of China (Grant Nos. 61975146, 62075159), and the Key Research and Development Program of Shandong Province, China (Grant No. 2019JZZY020206)
    [1]

    漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪 2010 59 3942Google Scholar

    Qi Y F, Liu C, Zhou J, Chen W B, Dong J X, Wei Y R, Lou Q H 2010 Acta Phys. Sin. 59 3942Google Scholar

    [2]

    Wang X L, Zhou P, Leng J Y, Du W B, Xu X J 2013 Chin. Phys. B 22 044205Google Scholar

    [3]

    Fu S J, Shi W, Feng Y, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood A R, Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49Google Scholar

    [4]

    Malinowski A, Vu T K, Chen K K, Nilsson J, Jeong Y, Alam S, Lin D J, Richardson J D 2009 Opt. Express 17 20927Google Scholar

    [5]

    Steinhausser B, Brignon A, Lallier E, Huignard P J, Georges P 2007 Opt. Express 15 6464Google Scholar

    [6]

    来文昌, 马鹏飞, 肖虎, 刘伟, 李灿, 姜曼, 许将明, 粟荣涛, 冷进勇, 马阎星, 周朴 2020 强激光与粒子束 32 121001Google Scholar

    Lai W C, Ma P F, Xiao H, Liu W, Li C, Jiang M, Xu J M, Su R T, Leng J Y, Ma Y X, Zhou P 2020 High Power Laser and Particle Beams 32 121001Google Scholar

    [7]

    Petersen E, Shi W, Chavez-Pirson A, Peyghambarian N 2012 Appl. Opt. 51 531Google Scholar

    [8]

    Broderick R G N, Offerhaus L H, Richardson J D, Sammut A R, Caplen J, Dong L 1999 Opt. Fiber Technol. 5 185Google Scholar

    [9]

    Shi W, Petersen B E, Leigh M, Zong J, Yao Z D, Chavez-Pirson A, Peyghambarian N 2009 Opt. Express 17 8237Google Scholar

    [10]

    Yang C, Chen D, Xu S, Deng H, Lin W, Zhao Q, Zhang Y, Zhou K, Feng Z, Qian Q, Yang Z 2016 Opt. Express 24 10956Google Scholar

    [11]

    Robin C, Dajani I 2011 Opt. Lett. 36 2641Google Scholar

    [12]

    Tino E, Christian W, Cesar J, Fabian S, Florian J, Hans-Jürgen O, Oliver S, Thomas S, Jens L, Andreas T 2011 Opt. Express 19 13218Google Scholar

    [13]

    Boggio C M J, Marconi D J, Fragnito L H 2005 J. Lightwave Technol. 23 3808Google Scholar

    [14]

    Zhang L, Hu J M, Wang J H, Feng Y 2012 Opt. Lett. 37 4796Google Scholar

    [15]

    Shi C, Zhang H W, Wang X L, Zhou P, Xu X J 2018 High Power Laser Sci. 6 e16Google Scholar

    [16]

    Fang Q, Shi W, Kieu K, Petersen E, Chavez-Pirson A, Peyghambarian N 2012 Opt. Express 20 16410Google Scholar

    [17]

    Su R T, Zhou P, Ma P F, Lü H B, Xu X J 2013 Appl. Opt. 52 7331Google Scholar

    [18]

    Zhou P, Huang L, Xu J M, Ma P F, Su R T, Wu J, Liu Z J 2017 Sci. China Technol. Sci. 60 1784Google Scholar

    [19]

    Agrawal P G 2001 Nonlinear Fiber Optics (New York: Academic Press) pp329–334

    [20]

    Su R T, Ma P F, Zhou P, Chen Z L, Wang X L, Ma Y X, Wu J, Xu X J 2019 High Power Laser Sci. Eng. 7 51Google Scholar

    [21]

    Huang L, Ma P F, Su R T, Lai W C, Ma Y X, Zhou P 2021 Opt. Express 29 761Google Scholar

  • 图 1  脉冲单频光纤激光MOPA光路示意图

    Fig. 1.  Schematic of the pulsed single-frequency fiber MOPA.

    图 2  不同有源光纤长度时光纤激光MOPA的平均输出功率曲线, 进入放大器种子光功率为220 mW, 重复频率为20 kHz

    Fig. 2.  Average power of the fiber MOPA with different active fiber lengths as a function of launched pump power with 220 mW seed power at a PRF of 20 kHz.

    图 3  平均输出功率为3.13 W、脉冲重复频率为20 kHz时的激光光谱

    Fig. 3.  Laser spectrum power recorded at the average output power of 3.13 W and the PRF of 20 kHz.

    图 4  (a)调制产生的脉冲种子源的波形; (b)经过预放大进入主放大级之前的波形; (c)主放大器最高输出功率时的波形

    Fig. 4.  Oscilloscope traces of the (a) modulated seed pulse, (b) pulse after being pre-amplified, and (c) main amplifier output at the maximum power.

    图 5  (a)使用锯齿波形时主放大器最高输出功率为24 kW时的激光线宽; (b)使用高斯波形时预放大级输出的激光线宽(脉宽7.5 ns, 峰值功率1.5 kW)

    Fig. 5.  Measured spectral linewidths of (a) the sawtooth pulse at the maximum peak power of 24 kW and (b) the Gaussian-shaped pulse after being pre-amplified to a peak power of 1.5 kW with a pulse width of 7.5 ns.

    图 6  锯齿波脉冲理论时间带宽积极限(实线)和实验中测得的不同脉宽锯齿波形光谱线宽(圆点)

    Fig. 6.  Theoretical transform-limited spectral linewidth of the sawtooth pulses (line) and the measured spectral linewidths at different pulse widths (solid circle).

    Baidu
  • [1]

    漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪 2010 59 3942Google Scholar

    Qi Y F, Liu C, Zhou J, Chen W B, Dong J X, Wei Y R, Lou Q H 2010 Acta Phys. Sin. 59 3942Google Scholar

    [2]

    Wang X L, Zhou P, Leng J Y, Du W B, Xu X J 2013 Chin. Phys. B 22 044205Google Scholar

    [3]

    Fu S J, Shi W, Feng Y, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood A R, Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49Google Scholar

    [4]

    Malinowski A, Vu T K, Chen K K, Nilsson J, Jeong Y, Alam S, Lin D J, Richardson J D 2009 Opt. Express 17 20927Google Scholar

    [5]

    Steinhausser B, Brignon A, Lallier E, Huignard P J, Georges P 2007 Opt. Express 15 6464Google Scholar

    [6]

    来文昌, 马鹏飞, 肖虎, 刘伟, 李灿, 姜曼, 许将明, 粟荣涛, 冷进勇, 马阎星, 周朴 2020 强激光与粒子束 32 121001Google Scholar

    Lai W C, Ma P F, Xiao H, Liu W, Li C, Jiang M, Xu J M, Su R T, Leng J Y, Ma Y X, Zhou P 2020 High Power Laser and Particle Beams 32 121001Google Scholar

    [7]

    Petersen E, Shi W, Chavez-Pirson A, Peyghambarian N 2012 Appl. Opt. 51 531Google Scholar

    [8]

    Broderick R G N, Offerhaus L H, Richardson J D, Sammut A R, Caplen J, Dong L 1999 Opt. Fiber Technol. 5 185Google Scholar

    [9]

    Shi W, Petersen B E, Leigh M, Zong J, Yao Z D, Chavez-Pirson A, Peyghambarian N 2009 Opt. Express 17 8237Google Scholar

    [10]

    Yang C, Chen D, Xu S, Deng H, Lin W, Zhao Q, Zhang Y, Zhou K, Feng Z, Qian Q, Yang Z 2016 Opt. Express 24 10956Google Scholar

    [11]

    Robin C, Dajani I 2011 Opt. Lett. 36 2641Google Scholar

    [12]

    Tino E, Christian W, Cesar J, Fabian S, Florian J, Hans-Jürgen O, Oliver S, Thomas S, Jens L, Andreas T 2011 Opt. Express 19 13218Google Scholar

    [13]

    Boggio C M J, Marconi D J, Fragnito L H 2005 J. Lightwave Technol. 23 3808Google Scholar

    [14]

    Zhang L, Hu J M, Wang J H, Feng Y 2012 Opt. Lett. 37 4796Google Scholar

    [15]

    Shi C, Zhang H W, Wang X L, Zhou P, Xu X J 2018 High Power Laser Sci. 6 e16Google Scholar

    [16]

    Fang Q, Shi W, Kieu K, Petersen E, Chavez-Pirson A, Peyghambarian N 2012 Opt. Express 20 16410Google Scholar

    [17]

    Su R T, Zhou P, Ma P F, Lü H B, Xu X J 2013 Appl. Opt. 52 7331Google Scholar

    [18]

    Zhou P, Huang L, Xu J M, Ma P F, Su R T, Wu J, Liu Z J 2017 Sci. China Technol. Sci. 60 1784Google Scholar

    [19]

    Agrawal P G 2001 Nonlinear Fiber Optics (New York: Academic Press) pp329–334

    [20]

    Su R T, Ma P F, Zhou P, Chen Z L, Wang X L, Ma Y X, Wu J, Xu X J 2019 High Power Laser Sci. Eng. 7 51Google Scholar

    [21]

    Huang L, Ma P F, Su R T, Lai W C, Ma Y X, Zhou P 2021 Opt. Express 29 761Google Scholar

  • [1] 李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义. 基于平凹多通腔的非线性脉冲压缩技术.  , 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [2] 王井上, 王栋梁, 常国庆. 基于色散管理的自相位调制光谱展宽滤波技术.  , 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [3] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器.  , 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [4] 王晓英, 邢宇婷, 陈润植, 贾雪琦, 吴继华, 江进, 李连勇, 常国庆. 基于自相位调制光谱选择驱动的无标记自发荧光多倍频显微镜系统.  , 2022, 71(10): 104204. doi: 10.7498/aps.71.20212282
    [5] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生.  , 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [6] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究.  , 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [7] 江俊峰, 黄灿, 刘琨, 张永宁, 王双, 张学智, 马喆, 陈文杰, 于哲, 刘铁根. 用于CARS激发源的全光纤飞秒脉冲谱压缩.  , 2017, 66(20): 204207. doi: 10.7498/aps.66.204207
    [8] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器.  , 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [9] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾.  , 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [10] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究.  , 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [11] 毛嵩, 吴正茂, 樊利, 杨海波, 赵茂戎, 夏光琼. 基于次谐波调制光注入半导体激光器获取窄线宽微波信号的实验研究.  , 2014, 63(24): 244204. doi: 10.7498/aps.63.244204
    [12] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器.  , 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [13] 薛力芳, 张强, 李芳, 周燕, 刘育梁. 高频调制大功率窄线宽分布反馈光纤激光器.  , 2011, 60(1): 014213. doi: 10.7498/aps.60.014213
    [14] 韩庆生, 乔耀军, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法.  , 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [15] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究.  , 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [16] 邓一鑫, 涂成厚, 吕福云. 非线性偏振旋转锁模自相似脉冲光纤激光器的研究.  , 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [17] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究.  , 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [18] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究.  , 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [19] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原.  , 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [20] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究.  , 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
计量
  • 文章访问数:  5641
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-14
  • 修回日期:  2021-05-16
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回
Baidu
map