搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纠缠相干态的量子照明雷达

陶志炜 任益充 艾则孜姑丽·阿不都克热木 刘世韦 饶瑞中

引用本文:
Citation:

基于纠缠相干态的量子照明雷达

陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中

Quantum illumination radar with entangled coherent states

Tao Zhi-Wei, Ren Yi-Chong, Abdukirim Azezigul, Liu Shi-Wei, Rao Rui-Zhong
PDF
HTML
导出引用
  • 量子照明雷达旨在利用量子光场探测热噪声环境下低反射率目标是否存在. 发射光源的纠缠特性使其较经典雷达具有独到的探测优势. 纠缠相干态(entangled coherent state, ECS)作为一类在噪声环境下纠缠鲁棒性较强的量子态, 近年来在量子科学的多个领域得到广泛的应用. 本文研究了基于三类不同ECS态的量子照明雷达的目标探测性能, 并以双模压缩态(two-mode squeezed vacuum state, TMSV)和相干态作为基准对比和分析了三类ECS态纠缠度大小与其探测性能之间的关系. 研究发现: 在目标为低反射率且发射光子数远小于背景噪声的情形下, 三类ECS态的探测性能优于相干态, 劣于TMSV态; 此外, 三类ECS态的探测性能可由其纠缠度的大小来决定. 在其他照明条件下, 使用量子照明雷达进行目标探测较相干态雷达并无明显的优势, 三类ECS态的探测性能与TMSV态和相干态方案并无明显联系.
    There has been a great interest in quantum metrology (e.g., quantum interferometric radar) due to its applications in sub-Rayleigh ranging and remote sensing. Despite interferometric radar has received vast amount of attentions over the past two decades, very few researches has been conducted on another type of quantum radar: quantum illumination radar, or more precisely quantum target detection. It is, in general, used to interrogate whether the low-reflectivity target in a noisy thermal bath is existed using quantum light. The entanglement properties of its emitted light source give it a unique detection advantage over the classical radar. Entangled coherent state (ECS), as a class of quantum states with high entanglement robustness in noisy environments, has been widely used in several fields of quantum science such as quantum informatics, quantum metrology . In this paper, we investigate the target detection performance of quantum illumination radar based on three different types of ECS states. We employ the two-mode squeezed vacuum state (TMSV) and the coherent state as benchmarks to compare and analyze the relationship between the entanglement strength of the three types of ECS states and their quantum illumination detection performance. We found that the detection performance of the three ECS states is better than that of the coherent state. However, it is inferior to that of the TMSV state when the target is of low reflectivity. The emitted photon number is much smaller than the background noise (we call this as “good” illumination conditions). On the contrary, quantum illumination radar has no obvious advantage over coherent state radar for target detection under other illumination conditions; further, the detection performance of these three types of ECS states is not evidently related to that of the TMSV state and the coherent state. Finally, we reveal that the target detection performance of quantum illumination for the first two types of ECS states can be determined by their entanglement strength under “good” illumination conditions by adjusting the inter-modal phase of these two ECS states while keeping the emitted photon number constant. Under other illumination conditions, there is no evidence to demonstrate the entanglement strength of ECS states being associated with their target detection performance.
      通信作者: 任益充, rych@aiofm.ac.cn
    • 基金项目: 安徽省自然科学基金青年项目(批准号: 1908085QA37)、国家自然科学基金青年科学基金(批准号: 11904369)和脉冲功率激光技术国家重点实验室主任基金(批准号: 2019ZR07)资助的课题
      Corresponding author: Ren Yi-Chong, rych@aiofm.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA37), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11904369), and the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology, China (Grant No. 2019ZR07)
    [1]

    Lanzagorta M 2011 Quantum Radar (San Rafael: Morgan & Claypool publishers) pp1−2

    [2]

    Pirandola S, Bardhan B R, Gehring T, Weedbrook C, Lloyd S 2018 Nat. Photonics 12 724Google Scholar

    [3]

    Lloyd S 2008 Science 321 1463Google Scholar

    [4]

    Shapiro J H 2020 IEEE Aerosp. Electron. Syst. Mag. 35 8Google Scholar

    [5]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601Google Scholar

    [6]

    Palma G D, Borregaard J 2018 Phys. Rev. A 98 012101Google Scholar

    [7]

    Guha S, Erkmen B I 2009 Phys. Rev. A 80 052310Google Scholar

    [8]

    Zhuang Q, Zhang Z, Shapiro J H 2017 Phys. Rev. Lett. 118 040801Google Scholar

    [9]

    Dolinar S J 1973 M.I.T. Res. Lab. Electron. Quart. Prog. Rep. 111 115

    [10]

    Zhuang Q, Zhang Z, Shapiro J H 2017 J. Opt. Soc. Am. B 34 1567Google Scholar

    [11]

    Jo Y, Lee S, Ihn Y S, Kim Z, Lee S Y 2021 Phys. Rev. Research 3 013006Google Scholar

    [12]

    Zhang Z, Mouradian S, Wong F N C, Shapiro J H 2015 Phys. Rev. Lett. 114 110506Google Scholar

    [13]

    Lopaeva E D, Ruo Berchera I, Degiovanni I P, Olivares S, Bride G, Genovese M 2013 Phys. Rev. Lett. 110 153603Google Scholar

    [14]

    England D G, Balaji B, Sussman B J 2019 Phys. Rev. A 99 023828Google Scholar

    [15]

    Zhang Z, Tengner M, Zhong T, Wong F N C, Shapiro J H 2013 Phys. Rev. Lett. 111 010501Google Scholar

    [16]

    Cho A https://www.sciencemag.org/news/2020/09/short-weird-life-and-potential-afterlife-quantum-radar [2020-9-23]

    [17]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [18]

    Chang C W S, Vadiraj A M, Bourassa J, Balaji B, Wilson C M 2019 Appl. Phys. Lett. 114 112601Google Scholar

    [19]

    Barzanjeh S, Pirandola S, Vitali D, Fink J M 2020 Sci. Adv. 6 eabb0451Google Scholar

    [20]

    Shapiro J H, Lloyd S 2009 New J. Phys. 11 063045Google Scholar

    [21]

    Devi A R U, Rajagopal A K 2009 Phys. Rev. A 79 062320Google Scholar

    [22]

    Fan L F, Zubairy M S 2018 Phys. Rev. A 98 012319Google Scholar

    [23]

    Zhang Y M, Li X W, Yang W, Jin G R 2013 Phys. Rev. A 88 043832Google Scholar

    [24]

    Jeong H, Kim M S, Lee J 2001 Phys. Rev. A 64 052308Google Scholar

    [25]

    Park K, Jeong H 2010 Phys. Rev. A 82 062325Google Scholar

    [26]

    van Enk S J, Hirota 2001 Phys. Rev. A 64 022313Google Scholar

    [27]

    Simon D S, Jaeger G, Sergienko A V 2014 Phys. Rev. A 89 012315Google Scholar

    [28]

    Joo J, Munro W J, Spiller T P 2011 Phys. Rev. Lett. 107 083601Google Scholar

    [29]

    Joo J, Park K, Jeong H, Munro W J, Nemoto K, Spiller T P 2012 Phys. Rev. A 86 043828Google Scholar

    [30]

    Lee S Y, Ihn Y S, Kim Z 2020 Phys. Rev. A 101 012332Google Scholar

    [31]

    Liu J, Lu X M, Sun Z, Wang X 2016 J. Phys. A: Math. Theor. 49 115302Google Scholar

    [32]

    Helstrom C W 1967 Int. Control 10 254Google Scholar

    [33]

    Audenaert K M R, Calsamiglia J, Muňoz-Tapia R, Bagan E, Masanes L, Acin A, Verstraete F 2007 Phys. Rev. Lett. 98 160501Google Scholar

    [34]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [35]

    Weedbrook C, Pirandola S, Thompson J, Vedral V, Gu M 2016 New J. Phys. 18 043027Google Scholar

    [36]

    Zhang S L, Guo J S, Bao W S, Shi J H, Jin C H, Zou X B, Guo G C 2014 Phys. Rev. A 89 062309Google Scholar

    [37]

    Zhang S L, Zou X B, Shi J H, Guo J S, Guo G C 2014 Phys. Rev. A 90 052308Google Scholar

    [38]

    Zhuang Q, Zhang Z, Shapiro J H 2017 Phys. Rev. A 96 020302(RGoogle Scholar

    [39]

    Las Heras U, Di Candia R, Fedorov K G, Deppe F, Sanz M, Solano E 2017 Sci. Rep. 7 9333Google Scholar

  • 图 1  量子照明雷达的物理模型. 发射光源$\rho _{\rm {AB}}$产生双模纠缠的量子态, A模作为信号光用于审查目标物体(图中用“飞机”代替)是否存在. 若目标存在, 热光场$\rho _{\rm C}$与A模在目标物体处进行混合, 随后与留在本地的闲置光B模进行联合测量. 若目标不存在, $\rho _{\rm C}$则直接进入探测器与B模进行联合测量

    Fig. 1.  Physical model of quantum illumination radar. The photonic source $\rho_{\rm {AB}}$ generates two-mode entangled quantum states. Mode A is used as a signal mode to interrogate the presence of the target object (illustrated by “an airplane” in figure). If an object is present, the thermal noise $\rho_{\rm C}$ is mixed with mode A at the object and subsequently measured together with the retained-mode B. If no object is present, $\rho_{\rm C}$ will enter the final measurement device directly for joint quantum measurements with mode B.

    图 2  von Neumann熵E随发射光子数$N_{\rm {emit}}$的变化曲线

    Fig. 2.  The variation curve of von Neumann entropy E with the emitted photon number $N_{\rm {emit}}$.

    图 3  不同热光场光子数下QCB衰减系数ε与Helstrom极限随发射光子数$N_{\rm {emit}}$的变化曲线 (a), (c)$N_{\rm {th}} \!=\! 0.1$; (b), (d)$N_{\rm {th}} \!=\! 1$

    Fig. 3.  Variation curves of QCB attenuation coefficient ε and Helstrom limit with the emitted photon number $N_{\rm {emit}}$ for different thermal noise photon numbers: (a), (c) $N_{\rm {th}} = 0.1$; (b), (d) $N_{\rm {th}} = 1$.

    图 4  $N_{\rm {emit}} = 1$时的von Neumann熵E与QCB衰减系数ε随相位φ的变化曲线 (a)von Neumann熵; (b), (c), (d) QCB衰减系数, 其中Nth的值分别为(b) $N_{{\rm{th}}} = 15$, (c) $N_{{\rm{th}}} = 1$以及(d) $N_{{\rm{th}}} = 0.1$

    Fig. 4.  Variation curves of von Neumann entropy E and QCB attenuation coefficient ε with phase φ for $N_{\rm {emit}} = 1$: (a) von Neumann entropy; (b), (c), (d) QCB attenuation coefficient, with (b) $N_{{\rm{th}}} = 15$, (c)$N_{{\rm{th}}} = 1$ and (d) $N_{{\rm{th}}} = 0.1$, respectively.

    图 5  $N_{\rm {emit}} = 0.3$时的QCB衰减系数ε与Helstrom极限随热光场光子数$N_{\rm {th}}$的变化曲线

    Fig. 5.  Variation curve of QCB attenuation coefficient ε and Helstrom limit with the thermal noise photon number $N_{\rm {th}}$ for $N_{\rm {emit}} = 0.3$.

    Baidu
  • [1]

    Lanzagorta M 2011 Quantum Radar (San Rafael: Morgan & Claypool publishers) pp1−2

    [2]

    Pirandola S, Bardhan B R, Gehring T, Weedbrook C, Lloyd S 2018 Nat. Photonics 12 724Google Scholar

    [3]

    Lloyd S 2008 Science 321 1463Google Scholar

    [4]

    Shapiro J H 2020 IEEE Aerosp. Electron. Syst. Mag. 35 8Google Scholar

    [5]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601Google Scholar

    [6]

    Palma G D, Borregaard J 2018 Phys. Rev. A 98 012101Google Scholar

    [7]

    Guha S, Erkmen B I 2009 Phys. Rev. A 80 052310Google Scholar

    [8]

    Zhuang Q, Zhang Z, Shapiro J H 2017 Phys. Rev. Lett. 118 040801Google Scholar

    [9]

    Dolinar S J 1973 M.I.T. Res. Lab. Electron. Quart. Prog. Rep. 111 115

    [10]

    Zhuang Q, Zhang Z, Shapiro J H 2017 J. Opt. Soc. Am. B 34 1567Google Scholar

    [11]

    Jo Y, Lee S, Ihn Y S, Kim Z, Lee S Y 2021 Phys. Rev. Research 3 013006Google Scholar

    [12]

    Zhang Z, Mouradian S, Wong F N C, Shapiro J H 2015 Phys. Rev. Lett. 114 110506Google Scholar

    [13]

    Lopaeva E D, Ruo Berchera I, Degiovanni I P, Olivares S, Bride G, Genovese M 2013 Phys. Rev. Lett. 110 153603Google Scholar

    [14]

    England D G, Balaji B, Sussman B J 2019 Phys. Rev. A 99 023828Google Scholar

    [15]

    Zhang Z, Tengner M, Zhong T, Wong F N C, Shapiro J H 2013 Phys. Rev. Lett. 111 010501Google Scholar

    [16]

    Cho A https://www.sciencemag.org/news/2020/09/short-weird-life-and-potential-afterlife-quantum-radar [2020-9-23]

    [17]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [18]

    Chang C W S, Vadiraj A M, Bourassa J, Balaji B, Wilson C M 2019 Appl. Phys. Lett. 114 112601Google Scholar

    [19]

    Barzanjeh S, Pirandola S, Vitali D, Fink J M 2020 Sci. Adv. 6 eabb0451Google Scholar

    [20]

    Shapiro J H, Lloyd S 2009 New J. Phys. 11 063045Google Scholar

    [21]

    Devi A R U, Rajagopal A K 2009 Phys. Rev. A 79 062320Google Scholar

    [22]

    Fan L F, Zubairy M S 2018 Phys. Rev. A 98 012319Google Scholar

    [23]

    Zhang Y M, Li X W, Yang W, Jin G R 2013 Phys. Rev. A 88 043832Google Scholar

    [24]

    Jeong H, Kim M S, Lee J 2001 Phys. Rev. A 64 052308Google Scholar

    [25]

    Park K, Jeong H 2010 Phys. Rev. A 82 062325Google Scholar

    [26]

    van Enk S J, Hirota 2001 Phys. Rev. A 64 022313Google Scholar

    [27]

    Simon D S, Jaeger G, Sergienko A V 2014 Phys. Rev. A 89 012315Google Scholar

    [28]

    Joo J, Munro W J, Spiller T P 2011 Phys. Rev. Lett. 107 083601Google Scholar

    [29]

    Joo J, Park K, Jeong H, Munro W J, Nemoto K, Spiller T P 2012 Phys. Rev. A 86 043828Google Scholar

    [30]

    Lee S Y, Ihn Y S, Kim Z 2020 Phys. Rev. A 101 012332Google Scholar

    [31]

    Liu J, Lu X M, Sun Z, Wang X 2016 J. Phys. A: Math. Theor. 49 115302Google Scholar

    [32]

    Helstrom C W 1967 Int. Control 10 254Google Scholar

    [33]

    Audenaert K M R, Calsamiglia J, Muňoz-Tapia R, Bagan E, Masanes L, Acin A, Verstraete F 2007 Phys. Rev. Lett. 98 160501Google Scholar

    [34]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [35]

    Weedbrook C, Pirandola S, Thompson J, Vedral V, Gu M 2016 New J. Phys. 18 043027Google Scholar

    [36]

    Zhang S L, Guo J S, Bao W S, Shi J H, Jin C H, Zou X B, Guo G C 2014 Phys. Rev. A 89 062309Google Scholar

    [37]

    Zhang S L, Zou X B, Shi J H, Guo J S, Guo G C 2014 Phys. Rev. A 90 052308Google Scholar

    [38]

    Zhuang Q, Zhang Z, Shapiro J H 2017 Phys. Rev. A 96 020302(RGoogle Scholar

    [39]

    Las Heras U, Di Candia R, Fedorov K G, Deppe F, Sanz M, Solano E 2017 Sci. Rep. 7 9333Google Scholar

  • [1] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验.  , 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [2] 田聪, 鹿翔, 张英杰, 夏云杰. 纠缠相干光场对量子态最大演化速率的操控.  , 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [3] 任益充, 王书, 饶瑞中, 苗锡奎. 大气闪烁对纠缠相干态量子干涉雷达影响机理.  , 2018, 67(14): 140301. doi: 10.7498/aps.67.20172401
    [4] 聂敏, 任家明, 杨光, 张美玲, 裴昌幸. 非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响.  , 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [5] 任宝藏, 邓富国. 光子两自由度超并行量子计算与超纠缠态操控.  , 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [6] 罗成立, 沈利托, 刘文武. 宏观场与环境作用过程中的纠缠突然死亡与突然产生.  , 2013, 62(19): 190301. doi: 10.7498/aps.62.190301
    [7] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究.  , 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [8] 张晓燕, 王继锁. 相空间中对称的纠缠相干态及其非经典特性.  , 2011, 60(9): 090304. doi: 10.7498/aps.60.090304
    [9] 曹辉, 赵清. 双势阱中冷原子的关联隧穿.  , 2010, 59(4): 2187-2192. doi: 10.7498/aps.59.2187
    [10] 张国锋, 卜晶晶. 共振和非共振情况下非简并双光子Tavis-Cummings模型中原子与原子之间的纠缠演化.  , 2010, 59(3): 1462-1467. doi: 10.7498/aps.59.1462
    [11] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射.  , 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [12] 郭亮, 梁先庭. T-C模型中光场和原子以及原子与原子之间的纠缠演化.  , 2009, 58(1): 50-54. doi: 10.7498/aps.58.50
    [13] 杨 健, 任 珉, 於亚飞, 张智明, 刘颂豪. 利用交叉克尔非线性效应实现纠缠转移.  , 2008, 57(2): 887-891. doi: 10.7498/aps.57.887
    [14] 夏云杰, 高德营. 纠缠相干态及其非经典特性.  , 2007, 56(7): 3703-3708. doi: 10.7498/aps.56.3703
    [15] 姜春蕾, 方卯发, 吴珍珍. 双纠缠原子在耗散腔场中的纠缠动力学.  , 2006, 55(9): 4647-4651. doi: 10.7498/aps.55.4647
    [16] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态.  , 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [17] 张国锋, 贾新娟, 严启伟, 梁九卿. 纠缠度对双光子Jaynes-Cumming模型的光学效应的影响.  , 2003, 52(10): 2393-2398. doi: 10.7498/aps.52.2393
    [18] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干.  , 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [19] 刘堂昆, 王继锁, 柳晓军, 詹明生. 纠缠态原子偶极间相互作用对量子态保真度的影响.  , 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
    [20] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度.  , 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
计量
  • 文章访问数:  7344
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2021-04-02
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回
Baidu
map