-
中国综合定位导航授时(positioning navigation timing, PNT)体系是以北斗卫星导航系统(BeiDou navigation satellite system, BDS)为核心的多源信息融合系统, 高精度的毫秒脉冲星计时能够增强BDS时间基准的长期稳定性, 并能维持未来深空用户的时间基准. 本文提出了一种改善BDS时间基准长期稳定性的脉冲星时地面服务系统, 概述了该系统的初步设计与功能, 同时研究了天地基脉冲星时建立方法, 利用3颗毫秒脉冲星的国际脉冲星计时阵(international pulsar timing array, IPTA)地面射电、“中子星内部成分探测器”(neutron star interior composition explorer, NICER)空间X射线计时数据以及500 m口径球面射电望远镜(five-hundred-meter aperture spherical radio telescope, FAST)模拟数据, 分析了天地基脉冲星时的稳定性. 研究结果表明, 基于IPTA数据的PSR J0437-4715地基脉冲星时的年稳定度为3.30 × 10–14, 10年的稳定度为1.23 × 10–15. 脉冲星红噪声会降低脉冲星时稳定性, PSR J1939+2134地基脉冲星时的年稳定度为6.51 × 10–12. 同时研究发现脉冲到达时间(time of arrival, TOA)的精度是制约天基脉冲星时稳定性的重要因素, 基于NICER空间X射线计时数据的PSR J1824-2452A天基脉冲星时年稳定度为1.36 × 10–13. 最后模拟分析了FAST将来对脉冲星时的贡献, 在不考虑红噪声的影响下, 基于FAST的PSR J1939+2134地基脉冲星时的年稳定度为2.55 × 10–15, 10年稳定度为1.39 × 10–16, 20年稳定度为5.08 × 10–17, 显示了FAST强大的脉冲星观测能力. FAST计时观测将有力地提升中国地基脉冲星时系统建设水平, 也能增强中国综合PNT系统时间基准的长期稳定性.The comprehensive positioning navigation timing (PNT) system in China is a multi-source information fusion system with BeiDou navigation satellite system (BDS) as a core. The high-precision millisecond pulsar timing can enhance the long-term stability of the BDS time benchmark and maintain a space-time benchmark for future deep-space users. In this paper, a ground-based pulsar time service system is proposed for detecting and improving the time benchmark of BDS. The preliminary designs and functions of the system are outlined. At the same time, the method of establishing space and ground-based pulsar time is studied. The ground radio timing data from the international pulsar timing array (IPTA), the X-ray timing data from the neutron star interior composition explorer (NICER) in space, and the simulation data from the 500-meter spherical radio telescope (five-hundred-meter aperture spherical radio telescope, FAST) for three millisecond pulsars are used to analyze the stability of ground/space-based pulsar time. The research results are as follows. The annual stability of the PSR J0437-4715 ground-based pulsar time based on IPTA data is 3.30 × 10–14, and the 10-year stability is 1.23 × 10–15, respectively. The existence of pulsar red noise can reduce the time stability of the pulsar. The annual stability of the PSR J1939+2134 ground-based pulsar time is 6.51 × 10–12. We find that the accuracy of the pulse time of Arrival(TOA) is an important factor that restricts the stability of space-based pulsar time. Based on NICER space X-ray timing data, the stability of the pulsar time for PSR J1824-2452A is 1.36 × 10–13 in one year. Finally, the simulation analysis of the FAST’s data without considering the influence of red noise is completed, and we find that the PSR J1939+2134 ground-based pulsar time based on the FAST has an annual stability of 2.55 × 10–15, a 10-year stability of 1.39 × 10–16, and a 20-year stability of 5.08 × 10–17. It demonstrates that the powerful pulsar observation capability of FAST will help to improve the accuracy of ground-based pulsar time and enhance the long-term stability of the comprehensive PNT system time benchmark in China.
-
Keywords:
- positioning navigation timing /
- pulsar time /
- atomic time /
- pulse TOA
[1] Soffel M, Langhans R 2013 Space-Time Reference Systems (Berlin: Springer) pp49−55
[2] Major F G 2007 The Quantum Beat-Principles and Applications of Atomic Clocks (2nd Ed.) (NewYork: Springer) pp1–10
[3] 翟造成, 张为群, 蔡勇, 杨佩红 2008 原子钟基本原理与时频测量技术 (上海: 上海科学技术文献出版社) 第23−30页
Zhai Z Z, Zhang W Q, Yong C, Yang P H 2008 Basic Principle of Atomic Clock and Time Frequency Measurement Technology (Shanghai: Shanghai Science and Technology Literature Press) pp23−30 (in Chinese)
[4] 黄秉英 2006 新一代原子钟 (武汉: 武汉大学出版社) 第67页
Huang B Y 2006 New Generation Atomic Clock (Wuhan: Wuhan University Press) p67(in Chinese)
[5] 谢军, 刘庆军, 边朗 2017 空间电子技术 5 1Google Scholar
Xie J, Liu Q J, Bian L 2017 Space Electronic Technology 5 1Google Scholar
[6] 杨元喜 2016 测绘学报 45 505Google Scholar
Yang Y X 2016 Acta Geodaetica et Cartographica Sin. 45 505Google Scholar
[7] National positioning, navigation, and timing architecture implementation plan, United States. National Security Space Office https://rosap.ntl.bts.gov/view/dot/18293[2021-3-8]
[8] National positioning navigation and timing architecture, National Security Space Office. https://rosap.ntl.bts.gov/view/dot/34816 [2021-3-8]
[9] 杨元喜 2018 测绘学报 47 893Google Scholar
Yang Y X 2018 Acta Geodaetica et Cartographica Sin. 47 893Google Scholar
[10] 冉承其 2014 卫星应用 8 13
Ran C Q 2014 Satellite Applications 8 13
[11] Zheng J J 2020. Pulsar Navigation Technology Academic Forum, Guangzhou, China, December 5, 2020, p1020
[12] II’in V G, Ilyasov Y P, Kuz’min A D, Pushkin S B 1984 Meas. Tech. 62 52
[13] Petit G, TavellaP 1996 A&A. 308 290
[14] Ilyasov Y P, Kopeikin S M, Rodin A 1998 Astron. Lett. 24 228
[15] Ricardo P, Esteban G, Pedro R, Michael K, Benjamin S, Setnam S, Kathryn B, John D, Stefano B 2019 Proceedings of the 2019 Precise Time and Time Interval Meeting, ION PTTI 2019, Reston, USA January 28–31, 2019 p191
[16] Allan D W 1987 41 st Annual Frequency Control Symposium of IEEE Philadelphia, USA 23–29 May, 1987 p751
[17] Taylor J H 1991 Proceedings of the IEEE 79 1054Google Scholar
[18] Kaspi V M, Taylor J H, Ryba M F 1994 APJ l 428 713Google Scholar
[19] Lommen A N 2001 Ph. D. Dissertation (Berkeley: University of California Berkeley)
[20] Vivekanand M 2020 APJ 890 143Google Scholar
[21] Rodin A E, Fedorova V A A 2018 Astron. Rep. 95 401
[22] Hobbs G, Coles W, Manchester R N, Keith M J, Shannon R M, Chen D, Bailes M, Bhat N D R, Burke-Spolaor S, Champion D, Chaudhary A, Hotan A, Khoo J, Kocz J, Levin Y, Oslowski S, Preisig B, Ravi V, Reynolds J E, Sarkissian J, Straten W V, Verbiest J P W, Yardley D, You X P 2012 MNRAS 427 2780Google Scholar
[23] Hobbs G, Guo Li, Manchester R N, Coles W, Lee K J, Manchester R N, Reardon D J, Matsakis D, Tong M L, Arzoumanian Z, Bailes M, Bassa C G, Bhat N D R, Brazier A, Burke-Spolaor S, Champion D J, Chatterjee S, Cognard I, Dai S, Desvignes G, Dolch T, Ferdman R D, Graikou E, Guillemot L, Janssen G H, Keith M J, Kerr M, Kramer M, Lam M T, Liu K, Lyne A, Lazio T J W, Lynch R, McKee J W, McLaughlin M A, Mingarelli C M F, Nice D J, Oslowski S, Pennucci T T, Perera B B P, Perrodin D, Possenti A, Russell C J, Sanidas S, Sesana A, Shaifullah G, Shannon R M, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Toomey L, Haasteren R V, Wang J B, Wang Y, Zhu X J 2020 MNRAS 491 5951Google Scholar
[24] 仲崇霞. 2007 博士论文(西安: 中科院国家授时中心)
Zhong C X 2007 Ph.D. Dissertation(Xi'an: National Time Service Center of Chinese Academy of Sciences)(in Chinese)
[25] 尹东山, 高玉平, 赵书红 2016 天文学报 3 326
Yin D S, Gao Y P, ZhaoS H 2016 Acta Astronom. Sin. 3 326
[26] Li Z X, Lee K J, Ricardo N C, Yong H X, Long G H, Min W Jian C W 2020 Sci. China Phys. Mech. 63 1
[27] Space navigation using X-ray pulsar observations, Hanson J E. http://scpnt.stanford.edu/pnt/PNT11/2011_presentation_files/03_Hanson-PNt2011.pdf. [2012-12-23]
[28] 周庆勇. 2020 博士论文(郑州: 信息工程大学)
Zhou Q Y. 2020 Ph.D. Dissertation(Zhengzhou: PLA University of information engineering) (in Chinese)
[29] Of Future IAU recommendations and organization, McCarthy D Dhttps://ui.adsabs.harvard.edu/abs/2012jsrs.conf..263M/abstract[2020-03-03]
[30] 童明雷, 杨廷高, 赵成仕, 高玉平 2017 中国科学: 物理学力学天文学 47 099503Google Scholar
Tong M L, Yang T G, Zhao C S, Gao Y P 2017 Sci. Sin-Phys. Mech. Astron. 47 099503Google Scholar
[31] 周庆勇, 姬剑锋, 任红飞 2013 62 139701Google Scholar
Zhou Q Y, Ji J F, Ren H F 2013 Acta Phys. Sin. 62 139701Google Scholar
[32] Edwards R T, Hobbs G B, Manchester R N 2006 MNRAS 372 1549Google Scholar
[33] Matsakis D N, Taylor J H, Eubanks T M 1997 A&A 326 924
[34] Autonomous spacecraft Navigation with Pulsars, Becker W, Bernhardt M G, Jessner A https://arxiv.org/pdf/1305.4842.pdf. [2015-08-10]
[35] Gotthelf E V, Bogdanov S 2017 APJ 845 159Google Scholar
[36] Perera B B P, DeCesar M E, Demorest P B, Kerr M, Lentati L, Nice D J, Osłowski S, Ransom S M, Keith M J, Arzoumanian Z, Bailes M, Baker P T, Bassa C G, Bhat N D R, Brazier A, Burgay M, Burke-Spolaor S, Caballero R N, Champion D J, Chatterjee S, Chen S, Cognard I, Cordes J M, Crowter K, Dai S, Desvignes G, Dolch T, Ferdman R D, Ferrara E C, Fonseca E, Goldstein J M, Graikou E, Guillemot L, Hazboun J S, Hobbs G, Hu H, Islo K, Janssen G H, Karuppusamy R, Kramer M, Lam M T, Lee K J, Liu K, Luo J, Lyne A G, Manchester R N, McKee J W, McLaughlin M A, Mingarelli C M F, Parthasarathy A P, Pennucci T T, Perrodin D, Possenti A, Reardon D J, Russell C J, Sanidas S A, Sesana A, Shaifullah G, Shannon R M, Siemens X, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Tiburzi C, Vallisneri M, Vecchio A, Wang J B, Zhang S B, Zhang L, Zhu W W, Zhu X J 2019 MNRAS 490 4666Google Scholar
[37] Dominick M R, Zaynab G, Lauren L, Elizabeth S, Andrea L, Alice H, Christo V, Renee L, Paul S R, Matthew k, Zaven A, Slavko B, Julia D, Sebastien G, Natalia L, Craig B M, Scott R, Teruaki E, Kent S W, Keith C G 2020 APJ 892 150Google Scholar
[38] NASA GSFC Science and Exploration, NASA http://heasarc.gsfc.nasa.gov/cgi-bin/W3 Browse/w3 browse.pl [2021-3-8]
[39] Deneva J S, Ray P S, Lommen A, Ransom S M, Bogdanov S, Kerr M, Wood K S, Arzoumanian Z, Black K, Doty J, Gendreau K C, Guillot S, Harding A, Lewandowska N, Malacaria C, Markwardt C B, Price S, Winternitz L, Wolff M T, Guillemot L, Cognard I, Baker P T, Blumer H, Brook P R, Cromartie H T, Demorest P B, DeCesar M E, Dolch T, Ellis J A, Ferdman R D, Ferrara E C, Fonseca E, Garver-Daniels N, Gentile P A, Jones M L, Lam M T, Lorimer D R, Lynch R S, McLaughlin M A, Ng C, Nice D J, Pennucci T T, Spiewak R, Stairs I H, Stovall K, Swiggum J K, Vigeland S J, Zhu W W 2019 APJ 874 160Google Scholar
[40] Nan R D, Wang Q M, Zhu L C, Zhu W B, Jin C J, Gan H Q 2006 CJAA 6 304Google Scholar
[41] Yonemaru N, Kuroyanagi S, Hobbs G, Takahashi, Zhu X J, Coles W A, Dai S, Howard E, Manchester R, Reardon D, Russell C, Shannon R M, Thyagarajan N, Spiewak R, Wang J B 2020 MNRAS 501 701Google Scholar
[42] 周庆勇, 刘思伟, 郝晓龙, 姬剑锋, 贺珍妮, 张彩红 2016 65 079701Google Scholar
Zhou Q Y, Liu S W, Hao X L, Ji J F, He Z N, Zhang C H 2016 Acta Phys. Sin. 65 079701Google Scholar
[43] Li K J 2010 CPTA Pulsar Navigation Technology Academic Forum Guangzhou, China, December 5, 2020, pp1−27
-
表 1 两颗毫秒脉冲星的基本信息
Table 1. Basic information of two millisecond pulsars.
NAME P0/ms DIST/kpc f1400/mJy FLUX/(erg·s–1·cm–2) W50/ms J1939+2134 1.55780656108493 3.5 15.2 1.8 × 10–12 0.0382 J1824-2452A 3.0543155922712 5.5 2.0 1.5 × 10–13 0.972 -
[1] Soffel M, Langhans R 2013 Space-Time Reference Systems (Berlin: Springer) pp49−55
[2] Major F G 2007 The Quantum Beat-Principles and Applications of Atomic Clocks (2nd Ed.) (NewYork: Springer) pp1–10
[3] 翟造成, 张为群, 蔡勇, 杨佩红 2008 原子钟基本原理与时频测量技术 (上海: 上海科学技术文献出版社) 第23−30页
Zhai Z Z, Zhang W Q, Yong C, Yang P H 2008 Basic Principle of Atomic Clock and Time Frequency Measurement Technology (Shanghai: Shanghai Science and Technology Literature Press) pp23−30 (in Chinese)
[4] 黄秉英 2006 新一代原子钟 (武汉: 武汉大学出版社) 第67页
Huang B Y 2006 New Generation Atomic Clock (Wuhan: Wuhan University Press) p67(in Chinese)
[5] 谢军, 刘庆军, 边朗 2017 空间电子技术 5 1Google Scholar
Xie J, Liu Q J, Bian L 2017 Space Electronic Technology 5 1Google Scholar
[6] 杨元喜 2016 测绘学报 45 505Google Scholar
Yang Y X 2016 Acta Geodaetica et Cartographica Sin. 45 505Google Scholar
[7] National positioning, navigation, and timing architecture implementation plan, United States. National Security Space Office https://rosap.ntl.bts.gov/view/dot/18293[2021-3-8]
[8] National positioning navigation and timing architecture, National Security Space Office. https://rosap.ntl.bts.gov/view/dot/34816 [2021-3-8]
[9] 杨元喜 2018 测绘学报 47 893Google Scholar
Yang Y X 2018 Acta Geodaetica et Cartographica Sin. 47 893Google Scholar
[10] 冉承其 2014 卫星应用 8 13
Ran C Q 2014 Satellite Applications 8 13
[11] Zheng J J 2020. Pulsar Navigation Technology Academic Forum, Guangzhou, China, December 5, 2020, p1020
[12] II’in V G, Ilyasov Y P, Kuz’min A D, Pushkin S B 1984 Meas. Tech. 62 52
[13] Petit G, TavellaP 1996 A&A. 308 290
[14] Ilyasov Y P, Kopeikin S M, Rodin A 1998 Astron. Lett. 24 228
[15] Ricardo P, Esteban G, Pedro R, Michael K, Benjamin S, Setnam S, Kathryn B, John D, Stefano B 2019 Proceedings of the 2019 Precise Time and Time Interval Meeting, ION PTTI 2019, Reston, USA January 28–31, 2019 p191
[16] Allan D W 1987 41 st Annual Frequency Control Symposium of IEEE Philadelphia, USA 23–29 May, 1987 p751
[17] Taylor J H 1991 Proceedings of the IEEE 79 1054Google Scholar
[18] Kaspi V M, Taylor J H, Ryba M F 1994 APJ l 428 713Google Scholar
[19] Lommen A N 2001 Ph. D. Dissertation (Berkeley: University of California Berkeley)
[20] Vivekanand M 2020 APJ 890 143Google Scholar
[21] Rodin A E, Fedorova V A A 2018 Astron. Rep. 95 401
[22] Hobbs G, Coles W, Manchester R N, Keith M J, Shannon R M, Chen D, Bailes M, Bhat N D R, Burke-Spolaor S, Champion D, Chaudhary A, Hotan A, Khoo J, Kocz J, Levin Y, Oslowski S, Preisig B, Ravi V, Reynolds J E, Sarkissian J, Straten W V, Verbiest J P W, Yardley D, You X P 2012 MNRAS 427 2780Google Scholar
[23] Hobbs G, Guo Li, Manchester R N, Coles W, Lee K J, Manchester R N, Reardon D J, Matsakis D, Tong M L, Arzoumanian Z, Bailes M, Bassa C G, Bhat N D R, Brazier A, Burke-Spolaor S, Champion D J, Chatterjee S, Cognard I, Dai S, Desvignes G, Dolch T, Ferdman R D, Graikou E, Guillemot L, Janssen G H, Keith M J, Kerr M, Kramer M, Lam M T, Liu K, Lyne A, Lazio T J W, Lynch R, McKee J W, McLaughlin M A, Mingarelli C M F, Nice D J, Oslowski S, Pennucci T T, Perera B B P, Perrodin D, Possenti A, Russell C J, Sanidas S, Sesana A, Shaifullah G, Shannon R M, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Toomey L, Haasteren R V, Wang J B, Wang Y, Zhu X J 2020 MNRAS 491 5951Google Scholar
[24] 仲崇霞. 2007 博士论文(西安: 中科院国家授时中心)
Zhong C X 2007 Ph.D. Dissertation(Xi'an: National Time Service Center of Chinese Academy of Sciences)(in Chinese)
[25] 尹东山, 高玉平, 赵书红 2016 天文学报 3 326
Yin D S, Gao Y P, ZhaoS H 2016 Acta Astronom. Sin. 3 326
[26] Li Z X, Lee K J, Ricardo N C, Yong H X, Long G H, Min W Jian C W 2020 Sci. China Phys. Mech. 63 1
[27] Space navigation using X-ray pulsar observations, Hanson J E. http://scpnt.stanford.edu/pnt/PNT11/2011_presentation_files/03_Hanson-PNt2011.pdf. [2012-12-23]
[28] 周庆勇. 2020 博士论文(郑州: 信息工程大学)
Zhou Q Y. 2020 Ph.D. Dissertation(Zhengzhou: PLA University of information engineering) (in Chinese)
[29] Of Future IAU recommendations and organization, McCarthy D Dhttps://ui.adsabs.harvard.edu/abs/2012jsrs.conf..263M/abstract[2020-03-03]
[30] 童明雷, 杨廷高, 赵成仕, 高玉平 2017 中国科学: 物理学力学天文学 47 099503Google Scholar
Tong M L, Yang T G, Zhao C S, Gao Y P 2017 Sci. Sin-Phys. Mech. Astron. 47 099503Google Scholar
[31] 周庆勇, 姬剑锋, 任红飞 2013 62 139701Google Scholar
Zhou Q Y, Ji J F, Ren H F 2013 Acta Phys. Sin. 62 139701Google Scholar
[32] Edwards R T, Hobbs G B, Manchester R N 2006 MNRAS 372 1549Google Scholar
[33] Matsakis D N, Taylor J H, Eubanks T M 1997 A&A 326 924
[34] Autonomous spacecraft Navigation with Pulsars, Becker W, Bernhardt M G, Jessner A https://arxiv.org/pdf/1305.4842.pdf. [2015-08-10]
[35] Gotthelf E V, Bogdanov S 2017 APJ 845 159Google Scholar
[36] Perera B B P, DeCesar M E, Demorest P B, Kerr M, Lentati L, Nice D J, Osłowski S, Ransom S M, Keith M J, Arzoumanian Z, Bailes M, Baker P T, Bassa C G, Bhat N D R, Brazier A, Burgay M, Burke-Spolaor S, Caballero R N, Champion D J, Chatterjee S, Chen S, Cognard I, Cordes J M, Crowter K, Dai S, Desvignes G, Dolch T, Ferdman R D, Ferrara E C, Fonseca E, Goldstein J M, Graikou E, Guillemot L, Hazboun J S, Hobbs G, Hu H, Islo K, Janssen G H, Karuppusamy R, Kramer M, Lam M T, Lee K J, Liu K, Luo J, Lyne A G, Manchester R N, McKee J W, McLaughlin M A, Mingarelli C M F, Parthasarathy A P, Pennucci T T, Perrodin D, Possenti A, Reardon D J, Russell C J, Sanidas S A, Sesana A, Shaifullah G, Shannon R M, Siemens X, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Tiburzi C, Vallisneri M, Vecchio A, Wang J B, Zhang S B, Zhang L, Zhu W W, Zhu X J 2019 MNRAS 490 4666Google Scholar
[37] Dominick M R, Zaynab G, Lauren L, Elizabeth S, Andrea L, Alice H, Christo V, Renee L, Paul S R, Matthew k, Zaven A, Slavko B, Julia D, Sebastien G, Natalia L, Craig B M, Scott R, Teruaki E, Kent S W, Keith C G 2020 APJ 892 150Google Scholar
[38] NASA GSFC Science and Exploration, NASA http://heasarc.gsfc.nasa.gov/cgi-bin/W3 Browse/w3 browse.pl [2021-3-8]
[39] Deneva J S, Ray P S, Lommen A, Ransom S M, Bogdanov S, Kerr M, Wood K S, Arzoumanian Z, Black K, Doty J, Gendreau K C, Guillot S, Harding A, Lewandowska N, Malacaria C, Markwardt C B, Price S, Winternitz L, Wolff M T, Guillemot L, Cognard I, Baker P T, Blumer H, Brook P R, Cromartie H T, Demorest P B, DeCesar M E, Dolch T, Ellis J A, Ferdman R D, Ferrara E C, Fonseca E, Garver-Daniels N, Gentile P A, Jones M L, Lam M T, Lorimer D R, Lynch R S, McLaughlin M A, Ng C, Nice D J, Pennucci T T, Spiewak R, Stairs I H, Stovall K, Swiggum J K, Vigeland S J, Zhu W W 2019 APJ 874 160Google Scholar
[40] Nan R D, Wang Q M, Zhu L C, Zhu W B, Jin C J, Gan H Q 2006 CJAA 6 304Google Scholar
[41] Yonemaru N, Kuroyanagi S, Hobbs G, Takahashi, Zhu X J, Coles W A, Dai S, Howard E, Manchester R, Reardon D, Russell C, Shannon R M, Thyagarajan N, Spiewak R, Wang J B 2020 MNRAS 501 701Google Scholar
[42] 周庆勇, 刘思伟, 郝晓龙, 姬剑锋, 贺珍妮, 张彩红 2016 65 079701Google Scholar
Zhou Q Y, Liu S W, Hao X L, Ji J F, He Z N, Zhang C H 2016 Acta Phys. Sin. 65 079701Google Scholar
[43] Li K J 2010 CPTA Pulsar Navigation Technology Academic Forum Guangzhou, China, December 5, 2020, pp1−27
计量
- 文章访问数: 6747
- PDF下载量: 170
- 被引次数: 0