搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脉冲星观测的原子时波动检验研究

韩孟纳 童明雷

引用本文:
Citation:

基于脉冲星观测的原子时波动检验研究

韩孟纳, 童明雷

Research on variation test of atomic time based on pulsar observation

Han Meng-Na, Tong Ming-Lei
PDF
HTML
导出引用
  • 脉冲星时(pulsar time, PT)具有较高的长期稳定性, 其与原子时(atomic time, AT)的建立属于两个完全不同的物理过程. 因此, 脉冲星时可作为原子时波动的一种独立检验方式. 本文结合真实钟差数据,展示了基于脉冲星时的原子时波动检验结果. 首先, 给出了Parkes脉冲星计时阵(Parkes pulsar timing array, PPTA)发布数据中四颗毫秒脉冲星的计时结果. 为进行原子时波动的检验, 利用四颗脉冲星的计时模型参数, 仿真生成以地球时(terrestrial time, TT) (BIPM19)为参考的脉冲到达时间(pulse times of arrival, TOAs)数据, 然后将参考时由TT (BIPM19)改为TT (TAI). 基于此, 分别采用经典加权平均算法与维纳(Wiener)滤波算法提取了原子时相对于脉冲星时的波动. 将两种方法得到的检验结果进行对比, 结果表明Wiener滤波算法对原子时波动的提取效果优于加权平均算法. 本文在Wiener滤波算法提取钟差信号的基础上加入了小波阈值去噪算法以扣除高频噪声, 去噪后PT更接近于TT (BIPM19), 进一步提高了PT对AT波动的检测能力. 对于TOA测量精度为100 ns的情况, PT与TT (BIPM19)的差值大致保持在40 ns以内. 本文是在给定TOA测量精度的前提下研究进一步提高PT精度的方法, 对下一步PT更加有效的守时应用具有重要意义.
    Pulsar time (PT) has high long-term stability, and its establishment process is completely different from that of atomic time (AT). Therefore, pulsar-based time scale can be used as an independent test for the fluctuation of atomic time scale. In this paper, the test results of the fluctuation of atomic time using pulsar time are presented in combination with the real clock difference data. In order to test the fluctuation of atomic time, the timing model parameters of four pulsars are used to simulate the pulse times of arrival (TOAs) data with TT(BIPM19) as the reference, and then the reference time is changed from TT(BIPM19) to TT(TAI). Based on this, the classical weighted average algorithm and the Wiener filtering algorithm are used to extract the variations of the atomic time relative to the pulsar time. The test results obtained by the two methods are compared, and it shows that the Wiener filtering algorithm is better than the weighted average algorithm for the extraction of the fluctuation of the atomic time. The wavelet threshold denoising method is added to the clock difference signal extracted by the Wiener filtering algorithm to deduct the high-frequency noise. After denoising, PT is closer to TT(BIPM19), which further improves the ability of PT to detect the fluctuation of AT. For the TOA measurement accuracy of 100 ns, the difference between PT and TT(BIPM19) can be kept roughly within 40 ns. This paper studies the method of further improving the accuracy of PT under the premise of given TOA measurement accuracy, which is of great significance for the next step to use PT for more effective application of time keeping.
      通信作者: 童明雷, mltong@ntsc.ac.cn
    • 基金项目: 科技部SKA专项(批准号: 2020SKA0120103)和国家自然科学基金(批准号: U1831130)资助的课题
      Corresponding author: Tong Ming-Lei, mltong@ntsc.ac.cn
    • Funds: Project supported by the SKA Project of the Ministry of Science and Technology of China (Grant No. 2020SKA0120103) and the National Natural Science Foundation of China (Grant No. U1831130)
    [1]

    Allan D W 1987 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 647Google Scholar

    [2]

    Panfilo G, Arias E F 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 140

    [3]

    Kaplan G H 2006 arXiv: 0602086[astro-ph]

    [4]

    Guinot B 1988 Astron. Astrophys. 192 370

    [5]

    Petit G 2003 Proceedings of the 35th Annual Precise Time and Time Interval Systems and Applications Meeting San Diego, California, December 2–4, 2003 p317

    [6]

    Gao Z F, Wang N, Shan H, Li X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [7]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [8]

    Fu G Z, Xing C C, Wang N 2020 Eur. Phys. J. C 80 582Google Scholar

    [9]

    Wang H, Gao Z F, Jia H Y, Wang N, Li X 2020 Universe 6 63Google Scholar

    [10]

    Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q 2016 Mod. Phys. Lett. A 31 1650070

    [11]

    Yan F Z, Gao Z F, Yang W S, Dong A J 2021 Astron. Nachr. 342 249Google Scholar

    [12]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

    [13]

    Gao Z F, Song D L, Li X, Shan H, Wang N 2019 Astron. Nachr. 340 241Google Scholar

    [14]

    Deng Z L, Gao Z F, Li X D, Shao Y 2020 Astrophys. J. 892 4Google Scholar

    [15]

    Deng Z L, Li X D, Gao Z F, Shao Y 2021 Astrophys. J. 909 174Google Scholar

    [16]

    Lorimer D R, Kramer M 1965 Handbook of Pulsar Astronomy (New York: Cambridge University Press) pp32–34

    [17]

    Coles W, Hobbs G, Champion D J, Manchester R N, Verbiest J P W 2011 Mon. Not. R. Astron. Soc. 418 561Google Scholar

    [18]

    Hobbs G, Guo L, Caballero R N, Coles W, Lee K J, Manchester R N, Reardon D J, Matsakis D, Tong M L, Arzoumanian Z, Bailes M, Bassa C G, Bhat N D R, Brazier A, Burke-Spolaor S, Champion D J, Chatterjee S, Cognard I, Dai S, Desvignes G, Dolch T, Ferdman R D, Graikou E, Guillemot L, Janssen G H, Keith M J, Kerr M, Kramer M, Lam M T, Liu K, Lyne A, Lazio T J W, Lynch R, McKee J W, McLaughlin M A, Mingarelli C M F, Nice D J, Osłowski S, Pennucci T T, Perera B B P, Perrodin D, Possenti A, Russell C J, Sanidas S, Sesana A, Shaifullah G, Shannon R M, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Toomey L, van Haasteren R, Wang J B, Wang Y, Zhu X J 2020 Mon. Not. R. Astron. Soc. 491 5951Google Scholar

    [19]

    Gao F, Tong M L, Gao Y P, Yang T G, Zhao C S 2019 Res. Astron. Astrophys. 19 100Google Scholar

    [20]

    Petit G, Tavella P 1985 Astron. Astrophys. 308 290

    [21]

    Hobbs G, Coles W, Manchester R N, Keith M J, Shannon R M, Chen D, Bailes M, Bhat N D R, Burke-Spolaor S, Champion D, Chaudhary A, Hotan A, Khoo J, Kocz J, Levin Y, Oslowski S, Preisig B, Ravi V, Reynolds J E, Sarkissian J, van Straten W, Verbiest J P W, Yardley D, You X P 2012 Mon. Not. R. Astron. Soc. 427 2780Google Scholar

    [22]

    仲崇霞, 杨廷高 2009 天文学报 50 425Google Scholar

    Zhong C X, Yang T G 2009 Acta Astronom. Sin. 50 425Google Scholar

    [23]

    Yang T G, Tong M L, Gao Y P 2022 Res. Astron. Astrophys. 22 105012Google Scholar

    [24]

    BIPM Time Department https://webtai.bipm.org/ftp/pub/tai/data/[2022-10-07]

    [25]

    Hobbs G 2013 Classical Quant. Grav. 30 224007Google Scholar

    [26]

    PPTA Data Release https://doi.org/10.4225/08/534CC21379C12[2022-10-08]

    [27]

    Hobbs G B, Edwards R T, Manchester R N 2006 Mon. Not. R. Astron. Soc. 369 655Google Scholar

    [28]

    Manchester R N, Hobbs G, Bailes M, Coles W A, van Straten W, Keith M J, Shannon R M, Bhat N D R, Brown A, Burke-Spolaor S G, Champion D J, Chaudhary A, Edwards R T, Hampson G, Hotan A W, Jameson A, Jenet F A, Kesteven M J, Khoo J, Kocz J, Maciesiak K, Oslowski S, Ravi V, Reynolds J R, Sarkissian J M, Verbiest J P W, Wen Z L, Wilson W E, Yardley D, Yan W M, You X P 2012 Publ. Astron. Soc. Pac 30 17

    [29]

    Wiener N, Mathematician C 1949 Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications (Massachusetts: MIT press) pp1043–1054

    [30]

    Rodin A E 2008 Mon. Not. R. Astron. Soc. 387 1583Google Scholar

    [31]

    Noor M A 1993 J. Optim. Theory Appl. 79 197Google Scholar

    [32]

    Kopeikin S M 1999 Mon. Not. R. Astron. Soc. 305 563Google Scholar

    [33]

    童明雷, 杨廷高, 赵成仕, 高玉平 2017 中国科学: 物理学 力学 天文学 47 099503Google Scholar

    Tong M L, Yang T G, Zhao C S, Gao Y P 2017 Sci. Sin-Phys. Mech. Astron. 47 099503Google Scholar

    [34]

    Zhao R M, Cui H 2015 Proceedings of the 14th International Symposium on Plasma Chemistry Sousse, Tunisia, December 18–20, 2015 p1

    [35]

    Shan H, Yuan J P, Wang N, Wang Z 2022 Astrophys. J. 935 117Google Scholar

    [36]

    王英红, 王冬霞, 杨洪升 2004 辽宁工学院学报 24 7

    Wang Y H, Wang D X, Yang H S 2004 Journal of Liaoning Institute of Technology 24 7

    [37]

    Cameron A D, Li D, Hobbs G, Zhang L, Miao C C, Wang J B, Yuan M, Wang S, Jacobs Corban G, Cruces M, Dai S, Feng Y, Han J, Kaczmarek J F, Niu J R, Pan Z C, Qian L, Tao Z Z, Wang P, Wang S Q, Xu H, Xu R X, Yue Y L, Zhang S B, Zhi Q J, Zhu W W, Champion D J, Kramer M, Zhou S Q, Qiu K P, Zhu M 2020 Mon. Not. R. Astron. Soc. 495 3515Google Scholar

    [38]

    Han J L, Wang C, Wang P F, Wang T, Zhou D J, Sun J H, Yan Y, Su W Q, Jing W C, Chen X, Gao X Y, Hou L G, Xu J, Lee K J, Wang N, Jiang P, Xu R X, Yan J, Gan H Q, Guan X, Huang W J, Jiang J C, Li H, Men Y P, Sun C, Wang B J, Wang H G, Wang S Q, Xie J T, Xu H, Yao R, You X P, Yu D J, Yuan J P, Yuen R, Zhang C F, Zhu Y 2021 Res. Astron. Astrophys. 21 107Google Scholar

  • 图 1  四颗脉冲星的计时残差[28]

    Fig. 1.  Timing residuals of the four pulsars[28]

    图 2  以TAI为参考时四颗星的拟合前后计时残差

    Fig. 2.  Pre-fit and post-fit timing residuals of four pulsars when the reference time scale is TAI

    图 3  经典加权平均算法计算的TT (PT)-TT (TAI)

    Fig. 3.  TT (PT)-TT (TAI) calculated by classical weighted average algorithm

    图 4  Wiener 滤波算法计算的TT (PT)-TT (TAI)

    Fig. 4.  TT (PT)-TT (TAI) calculated by Wiener filtering algorithm

    图 5  TT (PT)与TT (BIPM19)的差值

    Fig. 5.  Differences between TT (PT) and TT (BIPM19)

    图 6  小波分解树结构图

    Fig. 6.  Structure diagram of the wavelet decomposing tree

    图 7  TT (PT)-TT (TAI)经小波阈值去噪前后的对比图

    Fig. 7.  TT (PT)-TT (TAI) before and after processing by wavelet threshold denoising method

    图 8  小波阈值去噪前后TT (PT)相对于TT (BIPM19) 的变化

    Fig. 8.  Changes of TT (PT) relative to TT (BIPM19) before and after wavelet threshold denoising

    图 9  小波阈值去噪后TT (PT)-TT (BIPM19)的分布图

    Fig. 9.  Distribution map of TT (PT)-TT (BIPM19) after processing by wavelet threshold denoising method

    表 1  四颗脉冲星的基本参数[28]

    Table 1.  Basic parameters of the four pulsars[28]

    参数含义数值
    PSRJ脉冲星名称J0437-4715J1713+0747J1744-1134J1909-3744
    RAJ/(hh:mm:ss.sss)J2000赤经04:37:15.896176617:13:49.532723317:44:29.405789819:09:47.4346727
    DECJ/(°)J2000赤纬–47:15:09.11071+07:47:37.49783–11:34:54.68134–37:44:14.46677
    F0/$\rm{s}^{-1}$自转频率173.6879458121841218.8118404348010245.4261197130545339.3156872882437
    F1/$\rm{s}^{-2}$自转频率的一阶导数–1.728362 × 1015–4.08381×1016–5.38183 × 1016–1.614845 × 1015
    PEPOCH/MJD周期确定的历元54500545005450054500
    DM/($\rm{cm^{-3}\cdot pc}$)色散2.644915.99033.136910.3927
    下载: 导出CSV

    表 2  四颗脉冲星的归一化权重

    Table 2.  Normalized weights of the four pulsars

    PSRJ0437-4715J1713+0747J1744-1134J1909-3744
    RMS/μs0.2150.4570.6530.191
    $w_i$0.3850.0850.0420.488
    下载: 导出CSV
    Baidu
  • [1]

    Allan D W 1987 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 647Google Scholar

    [2]

    Panfilo G, Arias E F 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 140

    [3]

    Kaplan G H 2006 arXiv: 0602086[astro-ph]

    [4]

    Guinot B 1988 Astron. Astrophys. 192 370

    [5]

    Petit G 2003 Proceedings of the 35th Annual Precise Time and Time Interval Systems and Applications Meeting San Diego, California, December 2–4, 2003 p317

    [6]

    Gao Z F, Wang N, Shan H, Li X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [7]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [8]

    Fu G Z, Xing C C, Wang N 2020 Eur. Phys. J. C 80 582Google Scholar

    [9]

    Wang H, Gao Z F, Jia H Y, Wang N, Li X 2020 Universe 6 63Google Scholar

    [10]

    Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q 2016 Mod. Phys. Lett. A 31 1650070

    [11]

    Yan F Z, Gao Z F, Yang W S, Dong A J 2021 Astron. Nachr. 342 249Google Scholar

    [12]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

    [13]

    Gao Z F, Song D L, Li X, Shan H, Wang N 2019 Astron. Nachr. 340 241Google Scholar

    [14]

    Deng Z L, Gao Z F, Li X D, Shao Y 2020 Astrophys. J. 892 4Google Scholar

    [15]

    Deng Z L, Li X D, Gao Z F, Shao Y 2021 Astrophys. J. 909 174Google Scholar

    [16]

    Lorimer D R, Kramer M 1965 Handbook of Pulsar Astronomy (New York: Cambridge University Press) pp32–34

    [17]

    Coles W, Hobbs G, Champion D J, Manchester R N, Verbiest J P W 2011 Mon. Not. R. Astron. Soc. 418 561Google Scholar

    [18]

    Hobbs G, Guo L, Caballero R N, Coles W, Lee K J, Manchester R N, Reardon D J, Matsakis D, Tong M L, Arzoumanian Z, Bailes M, Bassa C G, Bhat N D R, Brazier A, Burke-Spolaor S, Champion D J, Chatterjee S, Cognard I, Dai S, Desvignes G, Dolch T, Ferdman R D, Graikou E, Guillemot L, Janssen G H, Keith M J, Kerr M, Kramer M, Lam M T, Liu K, Lyne A, Lazio T J W, Lynch R, McKee J W, McLaughlin M A, Mingarelli C M F, Nice D J, Osłowski S, Pennucci T T, Perera B B P, Perrodin D, Possenti A, Russell C J, Sanidas S, Sesana A, Shaifullah G, Shannon R M, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Toomey L, van Haasteren R, Wang J B, Wang Y, Zhu X J 2020 Mon. Not. R. Astron. Soc. 491 5951Google Scholar

    [19]

    Gao F, Tong M L, Gao Y P, Yang T G, Zhao C S 2019 Res. Astron. Astrophys. 19 100Google Scholar

    [20]

    Petit G, Tavella P 1985 Astron. Astrophys. 308 290

    [21]

    Hobbs G, Coles W, Manchester R N, Keith M J, Shannon R M, Chen D, Bailes M, Bhat N D R, Burke-Spolaor S, Champion D, Chaudhary A, Hotan A, Khoo J, Kocz J, Levin Y, Oslowski S, Preisig B, Ravi V, Reynolds J E, Sarkissian J, van Straten W, Verbiest J P W, Yardley D, You X P 2012 Mon. Not. R. Astron. Soc. 427 2780Google Scholar

    [22]

    仲崇霞, 杨廷高 2009 天文学报 50 425Google Scholar

    Zhong C X, Yang T G 2009 Acta Astronom. Sin. 50 425Google Scholar

    [23]

    Yang T G, Tong M L, Gao Y P 2022 Res. Astron. Astrophys. 22 105012Google Scholar

    [24]

    BIPM Time Department https://webtai.bipm.org/ftp/pub/tai/data/[2022-10-07]

    [25]

    Hobbs G 2013 Classical Quant. Grav. 30 224007Google Scholar

    [26]

    PPTA Data Release https://doi.org/10.4225/08/534CC21379C12[2022-10-08]

    [27]

    Hobbs G B, Edwards R T, Manchester R N 2006 Mon. Not. R. Astron. Soc. 369 655Google Scholar

    [28]

    Manchester R N, Hobbs G, Bailes M, Coles W A, van Straten W, Keith M J, Shannon R M, Bhat N D R, Brown A, Burke-Spolaor S G, Champion D J, Chaudhary A, Edwards R T, Hampson G, Hotan A W, Jameson A, Jenet F A, Kesteven M J, Khoo J, Kocz J, Maciesiak K, Oslowski S, Ravi V, Reynolds J R, Sarkissian J M, Verbiest J P W, Wen Z L, Wilson W E, Yardley D, Yan W M, You X P 2012 Publ. Astron. Soc. Pac 30 17

    [29]

    Wiener N, Mathematician C 1949 Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications (Massachusetts: MIT press) pp1043–1054

    [30]

    Rodin A E 2008 Mon. Not. R. Astron. Soc. 387 1583Google Scholar

    [31]

    Noor M A 1993 J. Optim. Theory Appl. 79 197Google Scholar

    [32]

    Kopeikin S M 1999 Mon. Not. R. Astron. Soc. 305 563Google Scholar

    [33]

    童明雷, 杨廷高, 赵成仕, 高玉平 2017 中国科学: 物理学 力学 天文学 47 099503Google Scholar

    Tong M L, Yang T G, Zhao C S, Gao Y P 2017 Sci. Sin-Phys. Mech. Astron. 47 099503Google Scholar

    [34]

    Zhao R M, Cui H 2015 Proceedings of the 14th International Symposium on Plasma Chemistry Sousse, Tunisia, December 18–20, 2015 p1

    [35]

    Shan H, Yuan J P, Wang N, Wang Z 2022 Astrophys. J. 935 117Google Scholar

    [36]

    王英红, 王冬霞, 杨洪升 2004 辽宁工学院学报 24 7

    Wang Y H, Wang D X, Yang H S 2004 Journal of Liaoning Institute of Technology 24 7

    [37]

    Cameron A D, Li D, Hobbs G, Zhang L, Miao C C, Wang J B, Yuan M, Wang S, Jacobs Corban G, Cruces M, Dai S, Feng Y, Han J, Kaczmarek J F, Niu J R, Pan Z C, Qian L, Tao Z Z, Wang P, Wang S Q, Xu H, Xu R X, Yue Y L, Zhang S B, Zhi Q J, Zhu W W, Champion D J, Kramer M, Zhou S Q, Qiu K P, Zhu M 2020 Mon. Not. R. Astron. Soc. 495 3515Google Scholar

    [38]

    Han J L, Wang C, Wang P F, Wang T, Zhou D J, Sun J H, Yan Y, Su W Q, Jing W C, Chen X, Gao X Y, Hou L G, Xu J, Lee K J, Wang N, Jiang P, Xu R X, Yan J, Gan H Q, Guan X, Huang W J, Jiang J C, Li H, Men Y P, Sun C, Wang B J, Wang H G, Wang S Q, Xie J T, Xu H, Yao R, You X P, Yu D J, Yuan J P, Yuen R, Zhang C F, Zhu Y 2021 Res. Astron. Astrophys. 21 107Google Scholar

  • [1] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚. 基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制.  , 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [2] 周庆勇, 魏子卿, 闫林丽, 孙鹏飞, 刘思伟, 冯来平, 姜坤, 王奕迪, 朱永兴, 刘晓刚, 明锋, 张奋, 贺珍妮. 面向综合定位导航授时系统的天地基脉冲星时间研究.  , 2021, 70(13): 139701. doi: 10.7498/aps.70.20210288
    [3] 郑天韵, 王圣业, 王光学, 邓小刚. 基于深度残差网络的高精度自然转捩模拟方法.  , 2020, 69(20): 204701. doi: 10.7498/aps.69.20200563
    [4] 林弋戈, 方占军. 锶原子光晶格钟.  , 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [5] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法.  , 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [6] 方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏. 一种基于最优频段的X射线脉冲星累积轮廓时延估计方法.  , 2016, 65(11): 119701. doi: 10.7498/aps.65.119701
    [7] 陈典兵, 朱明, 高文, 王慧利, 杨航. 基于残差矩阵估计的稀疏表示目标跟踪算法.  , 2016, 65(19): 194201. doi: 10.7498/aps.65.194201
    [8] 宋佳凝, 徐国栋, 李鹏飞. 多谐波脉冲星信号时延估计方法.  , 2015, 64(21): 219702. doi: 10.7498/aps.64.219702
    [9] 林旭, 罗志才. 一种新的卫星钟差Kalman滤波噪声协方差估计方法.  , 2015, 64(8): 080201. doi: 10.7498/aps.64.080201
    [10] 周庆勇, 姬剑锋, 任红飞. X射线脉冲星自主导航的观测方程.  , 2013, 62(13): 139701. doi: 10.7498/aps.62.139701
    [11] 孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡. 高稳定度X射线脉冲星信号模拟.  , 2013, 62(10): 109701. doi: 10.7498/aps.62.109701
    [12] 王璐, 许录平, 张华, 罗楠. 基于S变换的脉冲星辐射脉冲信号检测.  , 2013, 62(13): 139702. doi: 10.7498/aps.62.139702
    [13] 韩笑, 殷敬伟, 郭龙祥, 张晓. 基于差分Pattern时延差编码和海豚whistles信号的仿生水声通信技术研究.  , 2013, 62(22): 224301. doi: 10.7498/aps.62.224301
    [14] 周庆勇, 姬剑锋, 任红飞. 非等间隔计时数据的X射线脉冲星周期快速搜索算法.  , 2013, 62(1): 019701. doi: 10.7498/aps.62.019701
    [15] 毕研盟, 陈洁, 杨光林, 廖蜜, 吴荣华. 基于改进的单差法计算GPS掩星附加相位.  , 2012, 61(14): 149301. doi: 10.7498/aps.61.149301
    [16] 张华, 许录平. 脉冲星脉冲轮廓累积的最小熵方法.  , 2011, 60(3): 039701. doi: 10.7498/aps.60.039701
    [17] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法.  , 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [18] 张玉强, 葛德彪. 一种基于数字信号处理技术的改进通用色散介质移位算子时域有限差分方法.  , 2009, 58(12): 8243-8248. doi: 10.7498/aps.58.8243
    [19] 仲崇霞, 杨廷高. 小波域中的维纳滤波在综合脉冲星时算法中的应用.  , 2007, 56(10): 6157-6163. doi: 10.7498/aps.56.6157
    [20] 程檀生;曾谨言. 原子核激发带的转动惯量与奇偶差.  , 1977, 26(3): 243-249. doi: 10.7498/aps.26.243
计量
  • 文章访问数:  3373
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-19
  • 修回日期:  2023-01-10
  • 上网日期:  2023-02-04
  • 刊出日期:  2023-04-05

/

返回文章
返回
Baidu
map