搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合气体测量中重叠吸收谱线交叉干扰的分离解析方法

王前进 孙鹏帅 张志荣 张乐文 杨曦 吴边 庞涛 夏滑 李启勇

引用本文:
Citation:

混合气体测量中重叠吸收谱线交叉干扰的分离解析方法

王前进, 孙鹏帅, 张志荣, 张乐文, 杨曦, 吴边, 庞涛, 夏滑, 李启勇

Separation and analysis method of overlapping absorption spectra with cross interference in gas mixture measurement

Wang Qian-Jin, Sun Peng-Shuai, Zhang Zhi-Rong, Zhang Le-Wen, Yang Xi, Wu Bian, Pang Tao, Xia Hua, Li Qi-Yong
PDF
HTML
导出引用
  • 在基于可调谐二极管激光吸收光谱技术(tunable diode laser absorption spectroscopy, TDLAS)进行多种组分混合气体测量时, 经常会遇到吸收谱线之间存在相互干扰的现象, 这也是使用该技术测量过程中的主要“瓶颈”. 比如在前期的应用中: 微量一氧化碳(CO)和甲烷气体(CH4)在同时检测时两者的吸收谱线存在严重的重叠干扰现象, 特别是在高浓度CH4存在的环境下, 微量CO气体吸收信号会被干扰甚至湮没, 无法实现有效解调, 这是通过谱线选取所不能解决的问题. 因此, 针对此问题本文提出了基于支持向量回归模型, 以CO和CH4吸收谱线的严重重叠干扰问题为例, 通过选择线性核函数建立CO支持向量回归模型和CH4支持向量回归模型, 可对CO和CH4的混合气体吸收谱线进行解调, 最终获得两种气体浓度的准确测量结果. 通过实验分别实现了四种不同浓度CH4环境下微量CO气体的检测, 得到的CO和CH4浓度(气体的体积分数)测量的绝对误差分别小于2 × 10–6和0.2 × 10–2; 通过不同浓度的固定配比实验分析, CO和CH4气体的测量值与实际值之间的相关系数分别达到了0.998和0.9995, 且CO和CH4气体测量结果的绝对误差分别不超过2 × 10–6和0.1 × 10–2, 完全满足了混合气体的精确测量, 为实现多场合混合气体目标的实时监测提出了解决方案.
    The interference between overlapping gas absorption lines often occurs in the measurement of multi-component gas mixture with using tunable diode laser absorption spectroscopy (TDLAS). This is also the main problem of the technology in some applications. For instance, in the early application of multi-component gas mixture measurement in coal mines, we found that the absorption lines of carbon monoxide (CO) and methane (CH4) seriously overlapped. The absorption signal of trace CO gas was annihilated and could not be effectively demodulated, especially in the presence of high concentration of CH4. This problem could not be solved just by accurately selecting the spectral lines due to the band absorption of CH4. Therefore, in this paper, we introduce the support vector regression (SVR) model to deal with the interference between CO and CH4 absorption lines. The spectral signals of 14 groups of mixed gases with different concentrations of CO and CH4 are used as the training sets, and the five-fold cross-validation is adopted to prevent the model from overfitting. After 15 iterations in 30 seconds, the optimal regression model of CO and CH4 can be obtained respectively. Furthermore, it is worth noting that based on the experimental data, the linear kernel function is selected to construct the two gas SVR models, and the parameters of the SVR models are optimized by the sequential minimal optimization(SMO) algorithm. With the assistance of the SVR models, the absorption spectra of the two gases can be demodulated effectively, and finally the accurate measurement results are obtained. The measurement results show that the absolute error of trace CO and CH4 concentration(volume fraction of gas) are less than 2 × 10–6 and 0.2 × 10–2 respectively. Meanwhile, the correlation coefficient between the measured values and the actual values of CO and CH4 are 0.998 and 0.9995, respectively. In addition, the dynamic stability for each of the two regression models is fully verified by the experiment of the inflation process. Consequently, this method can eliminate the interference between the overlapping spectra, and can fully meet the requirements for accurately measuring the gas mixture. We hope that the SVR model can provide an effective solution for the real-time monitoring of multi-component gas mixture, and thus greatly improving the adaptability of TDLAS technology in the future.
      通信作者: 张志荣, zhangzr@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11874364, 41877311, 42005107)、国家重点研发计划(批准号: 2017YFC0805004)、安徽省重点研究与开发计划项目(批准号: 201904c03020005)和中国科学院合肥研究院“火花”基金项目(批准号: YZJJ2020QN8)资助的课题
      Corresponding author: Zhang Zhi-Rong, zhangzr@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874364, 41877311, 42005107), the National Key Research and Development Program of China (Grant No. 2017YFC0805004), the Key Research and Development Projects of Anhui Province, China (Grant No. 201904c03020005), and the "Spark" Fund Project of Hefei Institutes of Physics Science, Chinese Academy Sciences, China (Grant No. YZJJ2020QN8)
    [1]

    Zhang Z R, Pang T, Yang Y, Xia H, Cui X J, Sun P S, Wu B, Wang Y, Sigrist M W, Dong F Z 2016 Opt. Express 24 A943Google Scholar

    [2]

    Wang F P, Chang J, Wang Q, Wei W, Qin Z G 2017 Sens. Actuators A 259 152Google Scholar

    [3]

    Avetisov V, Bjoroey O, Wang J, Geiser P, Paulsen K G 2019 Sensors 19 5313Google Scholar

    [4]

    Nwaboh J A, Werhahn O, Ortwein P, Schiel D, Ebert V 2013 Meas. Sci. Technol. 24 015202Google Scholar

    [5]

    Vallon R, Soutade J, Verant J L, Meyers J, Paris S, Mohamed A 2010 Sensors 10 6081Google Scholar

    [6]

    夏滑, 吴边, 张志荣, 庞涛, 董凤忠, 王煜 2013 62 214208Google Scholar

    Xia H, Wu B, Zhang Z R, Pang T, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 214208Google Scholar

    [7]

    Zhang L W, Zhang Z R, Sun P S, Pang T, Xia H, Cui X J, Guo Q, Sigrist M W, Shu C M, Shu Z F 2020 Spectrochim. Acta, Part A 239 118495Google Scholar

    [8]

    He Q X, Dang P P, Liu Z W, Zheng C T, Wang Y D 2017 Opt. Quantum Electron. 49 115Google Scholar

    [9]

    Kluczynski P, Gustafsson J, Lindberg A M, Axner O 2001 Spectrochim. Acta, Part B 56 1277Google Scholar

    [10]

    Wang F, Wu Q, Huang Q X, Zhang H D, Yan J H, Cen K F 2015 Opt. Commun. 346 53Google Scholar

    [11]

    Lin X, Yu X L, Li F, Zhang S H, Xin J G, Chang X Y 2013 Appl. Phys. B: Lasers Opt. 110 401Google Scholar

    [12]

    Köhring M, Huang S, Jahjah M, Jiang W, Ren W, Willer U, Caneba C, Yang L, Nagrath D, Schade W, Tittel F K 2014 Appl. Phys. B 117 445Google Scholar

    [13]

    Zhang T, Kang J, Meng D, Wang H, Mu Z, Zhou M, Zhang X, Chen C 2018 Sensors 18 4295Google Scholar

    [14]

    张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 62 234204Google Scholar

    Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204Google Scholar

    [15]

    Gabrysch M, Corsi C, Pavone F S, Inguscio M 1997 Appl. Phys. B 65 75Google Scholar

    [16]

    Cai T D, Gao G Z, Wang M R 2016 Opt. Express 24 859Google Scholar

    [17]

    Malegori C, Marques E J N, Freitas S T d, Pimentel M F, Pasquini C, Casiraghi E 2017 Talanta 165 112Google Scholar

    [18]

    张志荣, 夏滑, 董凤忠, 庞涛, 吴边 2013 光学精密工程 21 2771Google Scholar

    Zhang Z R, Xia H, Dong F Z, Pang T, Wu B 2013 Opt. Precis. Eng. 21 2771Google Scholar

    [19]

    Shao L G, Fang B, Zheng F, Qiu X B, He Q S, Wei J L, Li C L, Zhao W X 2019 Spectrochim. Acta, Part A 222 117118Google Scholar

    [20]

    Qu J, Chen H Y, Liu W Z, Zhang B, Li Z B 2015 Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering Zhengzhou, PRC, April 11−13, 2015 p2111

    [21]

    Laref R, Losson E, Sava A, Adjallah K, Siadat M 2018 2018 Ieee International Conference on Industrial Technology (Icit) Lyon, France, February 19−22, 2018 p1335

    [22]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [23]

    Smola A J, Scholkopf B 2004 Stat. Comput. 14 199Google Scholar

    [24]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

  • 图 1  DFB激光器电流-波长调谐性能曲线

    Fig. 1.  Current-wavelength tuning curve of DFB laser.

    图 2  实验系统原理图

    Fig. 2.  Schematic diagram of the experimental system.

    图 3  CO (20 × 10–6, 400 × 10–6)和CH4 (1 × 10–2)的模拟吸收光谱图

    Fig. 3.  Simulated absorption spectra of CO (20 × 10–6, 400 × 10–6) and CH4 (1 × 10–2).

    图 4  三组气体(Group 1、Group 4、Group 10)的2f/1f信号

    Fig. 4.  2f/1f signals of three groups of gases (Group 1, Group 4, Group 10).

    图 5  CO和CH4浓度设置值和测试值对比 (a) CO浓度值; (b) CH4浓度值

    Fig. 5.  Comparisons between set and test values: (a) CO concentration; (b) CH4 concentration.

    图 6  设置值和测量值之间相关性及测量误差 (a) CO相关性; (b) CH4相关性; (c) CO测量误差; (d) CH4测量误差

    Fig. 6.  Correlation and test errors between set and average values: (a) CO correlation; (b) CH4 correlation; (c) CO errors; (d) CH4 errors.

    图 7  不同浓度CH4对CO测量结果的干扰

    Fig. 7.  Interference on CO measurement results by different concentrations of CH4.

    图 8  第一组充气过程中CO和CH4浓度变化

    Fig. 8.  Concentration measured of CO and CH4 during the first set of inflation.

    图 9  第二组充气过程中CO和CH4浓度变化

    Fig. 9.  Concentration measured of CO and CH4 during the second set of inflation.

    表 1  训练数据集

    Table 1.  Training data set.

    Group
    Standard gas
    category and
    concentration
    Ratio
    Gas category and
    concentration in
    multi-pass cell
    CO/10–6CH4/10–2CO/10–6CH4/10–2
    119.3019.30
    254.0054.00
    3102.00102.00
    400.5000.50
    501.0401.04
    602.0202.02
    705.0205.02
    854.01.041∶127.00.52
    9102.01.041∶151.00.52
    1019.31.041∶19.60.52
    1119.30.501∶19.60.25
    1219.35.021∶19.62.51
    1319.32.021∶19.61.01
    1419.38.501∶19.64.25
    下载: 导出CSV

    表 2  SVR模型主要参数

    Table 2.  Optimal parameters of SVR model.

    CO-SVRmodelCH4-SVRmodel
    BoxConstraint(C )0.34430.0180
    KernelScale0.06170.9205
    ε0.171065.1810
    Total function evaluations1515
    Total elapsed time in seconds26.254512.5730
    下载: 导出CSV
    Baidu
  • [1]

    Zhang Z R, Pang T, Yang Y, Xia H, Cui X J, Sun P S, Wu B, Wang Y, Sigrist M W, Dong F Z 2016 Opt. Express 24 A943Google Scholar

    [2]

    Wang F P, Chang J, Wang Q, Wei W, Qin Z G 2017 Sens. Actuators A 259 152Google Scholar

    [3]

    Avetisov V, Bjoroey O, Wang J, Geiser P, Paulsen K G 2019 Sensors 19 5313Google Scholar

    [4]

    Nwaboh J A, Werhahn O, Ortwein P, Schiel D, Ebert V 2013 Meas. Sci. Technol. 24 015202Google Scholar

    [5]

    Vallon R, Soutade J, Verant J L, Meyers J, Paris S, Mohamed A 2010 Sensors 10 6081Google Scholar

    [6]

    夏滑, 吴边, 张志荣, 庞涛, 董凤忠, 王煜 2013 62 214208Google Scholar

    Xia H, Wu B, Zhang Z R, Pang T, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 214208Google Scholar

    [7]

    Zhang L W, Zhang Z R, Sun P S, Pang T, Xia H, Cui X J, Guo Q, Sigrist M W, Shu C M, Shu Z F 2020 Spectrochim. Acta, Part A 239 118495Google Scholar

    [8]

    He Q X, Dang P P, Liu Z W, Zheng C T, Wang Y D 2017 Opt. Quantum Electron. 49 115Google Scholar

    [9]

    Kluczynski P, Gustafsson J, Lindberg A M, Axner O 2001 Spectrochim. Acta, Part B 56 1277Google Scholar

    [10]

    Wang F, Wu Q, Huang Q X, Zhang H D, Yan J H, Cen K F 2015 Opt. Commun. 346 53Google Scholar

    [11]

    Lin X, Yu X L, Li F, Zhang S H, Xin J G, Chang X Y 2013 Appl. Phys. B: Lasers Opt. 110 401Google Scholar

    [12]

    Köhring M, Huang S, Jahjah M, Jiang W, Ren W, Willer U, Caneba C, Yang L, Nagrath D, Schade W, Tittel F K 2014 Appl. Phys. B 117 445Google Scholar

    [13]

    Zhang T, Kang J, Meng D, Wang H, Mu Z, Zhou M, Zhang X, Chen C 2018 Sensors 18 4295Google Scholar

    [14]

    张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 62 234204Google Scholar

    Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204Google Scholar

    [15]

    Gabrysch M, Corsi C, Pavone F S, Inguscio M 1997 Appl. Phys. B 65 75Google Scholar

    [16]

    Cai T D, Gao G Z, Wang M R 2016 Opt. Express 24 859Google Scholar

    [17]

    Malegori C, Marques E J N, Freitas S T d, Pimentel M F, Pasquini C, Casiraghi E 2017 Talanta 165 112Google Scholar

    [18]

    张志荣, 夏滑, 董凤忠, 庞涛, 吴边 2013 光学精密工程 21 2771Google Scholar

    Zhang Z R, Xia H, Dong F Z, Pang T, Wu B 2013 Opt. Precis. Eng. 21 2771Google Scholar

    [19]

    Shao L G, Fang B, Zheng F, Qiu X B, He Q S, Wei J L, Li C L, Zhao W X 2019 Spectrochim. Acta, Part A 222 117118Google Scholar

    [20]

    Qu J, Chen H Y, Liu W Z, Zhang B, Li Z B 2015 Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering Zhengzhou, PRC, April 11−13, 2015 p2111

    [21]

    Laref R, Losson E, Sava A, Adjallah K, Siadat M 2018 2018 Ieee International Conference on Industrial Technology (Icit) Lyon, France, February 19−22, 2018 p1335

    [22]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [23]

    Smola A J, Scholkopf B 2004 Stat. Comput. 14 199Google Scholar

    [24]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

  • [1] 任航, 赵丹, 董立强, 刘少刚, 杨金水. 基于机器学习的磁流变弹性体磁致储能模量的快速准确表征.  , 2024, 73(16): 165101. doi: 10.7498/aps.73.20240482
    [2] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量.  , 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [3] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究.  , 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [4] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用.  , 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [5] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量.  , 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [6] 王新鑫, 迟露鑫, 伍光凤, 李春天, 樊丁. Ar-O2混合气体电弧的数值模拟.  , 2019, 68(17): 178102. doi: 10.7498/aps.68.20190416
    [7] 张云刚, 刘如慧, 汪梅婷, 王允轩, 李占勋, 童凯. 漫反射立方腔单次反射平均光程的理论和实验研究.  , 2018, 67(1): 016102. doi: 10.7498/aps.67.20171808
    [8] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测.  , 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [9] 王敏锐, 蔡廷栋. 1.5μm处CO2与CO高温线强的实验分析与理论计算.  , 2015, 64(21): 213301. doi: 10.7498/aps.64.213301
    [10] 赵家瑞, 李毅飞, 马景龙, 王进光, 黄开, 韩玉晶, 马勇, 闫文超, 李大章, 袁大伟, 李玉同, 张杰, 陈黎明. 常温下氙气以及氢氙混合气体形成的团簇的特性研究.  , 2015, 64(4): 042101. doi: 10.7498/aps.64.042101
    [11] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究.  , 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [12] 杨先清, 刘甫, 贾燕, 邓敏, 郭海萍, 唐刚. 垂直振动颗粒混合气体的振荡现象研究.  , 2010, 59(2): 1116-1122. doi: 10.7498/aps.59.1116
    [13] 蔡从中, 裴军芳, 温玉锋, 朱星键, 肖婷婷. 选择性激光烧结成型件密度的支持向量回归预测.  , 2009, 58(13): 8-S14. doi: 10.7498/aps.58.8
    [14] 蔡从中, 庄魏萍, 温玉锋, 朱星键, 裴军芳, 肖婷婷. 基于拓扑结构的碱金属化合物摩尔磁化率的支持向量回归研究.  , 2009, 58(13): 272-S277. doi: 10.7498/aps.58.272
    [15] 温玉锋, 蔡从中, 裴军芳, 朱星键, 肖婷婷, 王桂莲. AlON-TiN复相材料合成工艺参数的支持向量回归分析.  , 2009, 58(13): 15-S20. doi: 10.7498/aps.58.15
    [16] 张军峰, 胡寿松. 基于多重核学习支持向量回归的混沌时间序列预测.  , 2008, 57(5): 2708-2713. doi: 10.7498/aps.57.2708
    [17] 王鹏军, 陈海霞, 熊德智, 于旭东, 高 峰, 张 靖. 实现玻色-费米混合气体量子简并的四极Ioffe组合磁阱设计.  , 2008, 57(8): 4840-4845. doi: 10.7498/aps.57.4840
    [18] 于振华, 蔡远利. 基于在线小波支持向量回归的混沌时间序列预测.  , 2006, 55(4): 1659-1665. doi: 10.7498/aps.55.1659
    [19] 叶美盈, 汪晓东, 张浩然. 基于在线最小二乘支持向量机回归的混沌时间序列预测.  , 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [20] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量.  , 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
计量
  • 文章访问数:  6645
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-03-11
  • 上网日期:  2021-07-16
  • 刊出日期:  2021-07-20

/

返回文章
返回
Baidu
map