-
在不同环境温度下, 热差对红外多光谱相机的成像质量造成一定的影响, 基于此, 建立了红外多光谱相机的无热化模型, 此模型将红外多光谱相机等效为分离式双透镜光学系统. 在定焦距的情况下, 分析了后焦距变长对前后透镜光焦度的影响, 从光焦度绝对值与正负值变化情况对材料的选择范围进行约束, 实现光学材料的快速选择. 采用该模型对波段为8—14 μm, 焦距为50 mm, F数为1.4的红外多光谱相机在–40—+60 ℃范围内进行无热化设计. 通过仿真分析, 各视场在奈奎斯特频率为30 lp/mm处的值均达到0.39, 接近衍射极限; 弥散斑均方根半径均小于艾里斑半径19.17 μm; 轴向像差均小于0.02 mm. 采用通道为9.43—11.53 μm的红外多光谱相机对SF6气体进行成像实验, 实验结果表明, 经过无热化的红外多光谱相机对SF6气体的成像效果良好, 设计方法正确可行.Under different ambient temperatures, the thermal aberration certainly affects the imaging quality of infrared multi-spectral camera. Therefore, an athermalized model of infrared multi-spectral cameras is established, and in this model the ambient infrared multispectral camera is equivalent to a separated dual-lens optical system. In the case of the fixed focal length, the influence of the back focal length on the change of the focal power of the front lens and back lens is analyzed. Now, the variation range of the front and rear lens interval is assumed to be restricted. When the back focal length is smaller than the focal length, the ratio of the absolute value of the focal power of the front lens to the absolute value of the focal power of the back lens decreases with the back focal length increasing. The material of the front lens and the back lens have a longer interval on the thermogram. When the back focal length is greater than the focal length, the scenario becomes exactly opposite. Combined with the judgment method of the positive value and negative value of the focal power on the thermogram, the selection range of materials is constrained by the positive value, negative value, and absolute value of focal power, thus realizing the rapid selection of the optical materials. This method is used to design an athermalized infrared multispectral camera with a waveband of 8–14 μm, a focal length of 50 mm, and an F number of 1.4 in a range from –40 ℃ to +60 ℃. Through the simulation analysis, the value of the athermalized infrared multispectral camera, at the Nyquist frequency of 30 lp/mm reaches 0.39, which is close to the diffraction limit; the root mean square radius of the diffuse spot is smaller than the Airy spot radius of 19.17 μm; the axial aberration is less than 0.02 mm, and the design results show that this method can make the long back-focus infrared optical system maintain stable imaging quality in a large temperature range. The SF6 gas is detected experimentally, and the experimental results demonstrate the excellent optical performance of the system.
-
Keywords:
- infrared multispectral camera /
- long back focal length /
- athermal design /
- hybrid refractive-diffractive system
[1] Xu L, Gao M G, Liu J G, Jiao Y, Feng M C, Tong J J, Li S 2013 Remote Sensing of Clouds and the Atmosphere XVII; and Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VIII Edinburgh, United Kingdom, September 24–27, 2012 p85340M
[2] Yin H, Sun Y W, Liu C, Zhang L, Lu X, Wang W, Shan C G, Hu Q H, Tian Y, Zhang C X, Su W J, Zhang H F, Palm M A, Notholt J, Liu J G 2019 Opt. Express 27 A1225Google Scholar
[3] Yin H, Sun Y W, Liu C, Lu X, Smale D, Blumenstock T, Nagahama T, Wang W, Tian Y, Hu Q H, Shan C G, Zhang H F, Liu J G 2020 Opt. Express 28 8041Google Scholar
[4] Yin H, Sun Y, Song Z, Liu C, Wang W, Shan C, Zha L 2021 Remote Sens. 13 791Google Scholar
[5] Gay L, Alazarine A, Favier S, Blanchard S 2018 19th Meeting of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing as part of the SPIE Defense and Commercial Sensing (DCS) Symposiμm Orlando, United States of America, April 16–18, 2018 p106290X
[6] Lim T Y, Kim Y S, Park S C 2017 Curr. Opt. Photonics 1 378Google Scholar
[7] Korai U A, Bermello A H, Strain M J, Glesk I, Velasco A V 2019 IEEE Photonics J. 11 4601611Google Scholar
[8] Perry J W 1943 Proc. Phys. Soc. 55 0257Google Scholar
[9] Tamagawa Y, Wakabayashi S, Tajime T, Hashimoto T 1994 Appl. Opt. 33 8009Google Scholar
[10] Tamagawa Y, Tajime T 1996 Opt. Eng. 35 3001Google Scholar
[11] Schwertz K, Dillon D, Sparrold S 2012 Conference on Current Developments in Lens Design and Optical Engineering XIII San Diego, United States of America, August 13–15, 2012 p84860E
[12] Bernet S, Ritsch-Marte M 2017 Opt. Express 25 2469Google Scholar
[13] 王磊, 窦健泰, 马骏, 袁操今, 高志山, 魏聪, 张天宇 2017 66 094201Google Scholar
Wang L, Dou J T, Ma J, Yuan C J, Gao Z S, Wei C, Zhang T Y 2017 Acta Phys.sin. 66 094201Google Scholar
[14] Piao M X, Cui Q F, Zhang B, Zhao C Z 2018 Appl. Opt. 57 8861Google Scholar
[15] Kim D C, Hermerschmidt A, Dyachenko P, Scharf T 2020 Opt. Express 28 22321Google Scholar
[16] 郁道银, 谈恒英 2011 工程光学 (上篇) (北京: 机械工业出版社) 第31−82页
Yu D Y, Tan H Y 2011 Engineering Optics (Vol.1) (Beijing: China Machine Press) pp31−82 (in Chinese)
[17] 胡玉禧, 周绍祥, 相里斌, 杨建峰 2000 光学学报 20 1386Google Scholar
Hu Y X, Zhou S X, Xiang L B, Yang J F 2000 J. Opt. 20 1386Google Scholar
[18] Alaruri S D 2016 Optik 127 254Google Scholar
[19] Xie N, Cui Q F, Sun L, Wang J F 2019 Appl. Opt. 58 635Google Scholar
[20] 宋岩峰, 邵晓鹏, 徐军 2008 57 6298Google Scholar
Song Y F, Shao X P, Xu J 2008 Acta Phys. Sin. 57 6298Google Scholar
[21] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫 2020 69 244202Google Scholar
Feng S, Chang J, Hu Y Y, Wu H, Liu X 2020 Acta Phys. Sin. 69 244202Google Scholar
[22] Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L 2008 Chin. Phys. B 17 4184Google Scholar
-
图 11 红外多光谱相机对SF6气体成像 (a)样机; (b) 2020年12月31日实验背景; (c) 5 ℃环境下成像结果; (d) 2021年01月27日实验背景; (e) 20 ℃环境下成像结果; (f) 40 ℃环境下成像结果
Fig. 11. SF6 gas imaging by infrared multispectral camera: (a) Prototype; (b) background of the experiment on December 31, 2020; (c) gas imaging results in 5 ℃ environment; (d) background of the experiment on January 27, 2021; (e) gas imaging results in 20 ℃ environment; (f) gas imaging results in 40 ℃ environment.
表 1 长波红外材料光学特性
Table 1. Optical properties of long wave infrared materials
Material n @
11 μmα
/(10–6 ℃)$\dfrac{ {\rm d}n }{ {\rm d}t}$
/(10–6 ℃)γ
/(10–6 ℃)ω/10–3 Ge 4.004 5.7 408 130.137 1.653 ZnSe 2.4 7.1 61 36.471 29.55 ZnS 2.186 6.6 41 27.964 77.392 GaAs 3.273 5.7 149 59.866 16.21 AMTIR1 2.494 12 72 36.191 14.236 IRG201 2.493 12.3 62 29.238 15.208 IRG202 2.4913 16.4 39 9.755 14.285 IRG203 2.582 16.2 39 8.452 16.877 IRG204 2.765 20.9 18 –10.7 10.88 IRG205 2.6 14 70 29.766 15.631 IRG206 2.775 20.7 32 –2.674 10.478 IRG207 2.607 20.3 17 –9.719 9.399 表 2 光学系统指标
Table 2. Design specifications of optical system.
Parameters Values Wavelength/μm 8—14 Focal length/mm 50 FOV/(o) 15.6 F/# 1.43 Operating temperature/℃ –40—+60 MTF > 0.3@30 lp/mm Depth of focus/μm ± 44.99 Housing material (${\alpha _{\text{h} } } = 23.6 \times {10^{ { { - } }6} }$) AL Back focal length/mm 40.53 Total length/mm < 100 表 3 –40 —+60 ℃范围内弥散斑均方根半径
Table 3. RMS radius in the range of –40—+60 ℃.
Spot diagram /μm Temperature/ ℃ –40 20 60 0 field 3.779 3.166 3.137 5.6 field 5.622 5.471 5.807 7.8 field 9.039 8.755 9.033 -
[1] Xu L, Gao M G, Liu J G, Jiao Y, Feng M C, Tong J J, Li S 2013 Remote Sensing of Clouds and the Atmosphere XVII; and Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VIII Edinburgh, United Kingdom, September 24–27, 2012 p85340M
[2] Yin H, Sun Y W, Liu C, Zhang L, Lu X, Wang W, Shan C G, Hu Q H, Tian Y, Zhang C X, Su W J, Zhang H F, Palm M A, Notholt J, Liu J G 2019 Opt. Express 27 A1225Google Scholar
[3] Yin H, Sun Y W, Liu C, Lu X, Smale D, Blumenstock T, Nagahama T, Wang W, Tian Y, Hu Q H, Shan C G, Zhang H F, Liu J G 2020 Opt. Express 28 8041Google Scholar
[4] Yin H, Sun Y, Song Z, Liu C, Wang W, Shan C, Zha L 2021 Remote Sens. 13 791Google Scholar
[5] Gay L, Alazarine A, Favier S, Blanchard S 2018 19th Meeting of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing as part of the SPIE Defense and Commercial Sensing (DCS) Symposiμm Orlando, United States of America, April 16–18, 2018 p106290X
[6] Lim T Y, Kim Y S, Park S C 2017 Curr. Opt. Photonics 1 378Google Scholar
[7] Korai U A, Bermello A H, Strain M J, Glesk I, Velasco A V 2019 IEEE Photonics J. 11 4601611Google Scholar
[8] Perry J W 1943 Proc. Phys. Soc. 55 0257Google Scholar
[9] Tamagawa Y, Wakabayashi S, Tajime T, Hashimoto T 1994 Appl. Opt. 33 8009Google Scholar
[10] Tamagawa Y, Tajime T 1996 Opt. Eng. 35 3001Google Scholar
[11] Schwertz K, Dillon D, Sparrold S 2012 Conference on Current Developments in Lens Design and Optical Engineering XIII San Diego, United States of America, August 13–15, 2012 p84860E
[12] Bernet S, Ritsch-Marte M 2017 Opt. Express 25 2469Google Scholar
[13] 王磊, 窦健泰, 马骏, 袁操今, 高志山, 魏聪, 张天宇 2017 66 094201Google Scholar
Wang L, Dou J T, Ma J, Yuan C J, Gao Z S, Wei C, Zhang T Y 2017 Acta Phys.sin. 66 094201Google Scholar
[14] Piao M X, Cui Q F, Zhang B, Zhao C Z 2018 Appl. Opt. 57 8861Google Scholar
[15] Kim D C, Hermerschmidt A, Dyachenko P, Scharf T 2020 Opt. Express 28 22321Google Scholar
[16] 郁道银, 谈恒英 2011 工程光学 (上篇) (北京: 机械工业出版社) 第31−82页
Yu D Y, Tan H Y 2011 Engineering Optics (Vol.1) (Beijing: China Machine Press) pp31−82 (in Chinese)
[17] 胡玉禧, 周绍祥, 相里斌, 杨建峰 2000 光学学报 20 1386Google Scholar
Hu Y X, Zhou S X, Xiang L B, Yang J F 2000 J. Opt. 20 1386Google Scholar
[18] Alaruri S D 2016 Optik 127 254Google Scholar
[19] Xie N, Cui Q F, Sun L, Wang J F 2019 Appl. Opt. 58 635Google Scholar
[20] 宋岩峰, 邵晓鹏, 徐军 2008 57 6298Google Scholar
Song Y F, Shao X P, Xu J 2008 Acta Phys. Sin. 57 6298Google Scholar
[21] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫 2020 69 244202Google Scholar
Feng S, Chang J, Hu Y Y, Wu H, Liu X 2020 Acta Phys. Sin. 69 244202Google Scholar
[22] Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L 2008 Chin. Phys. B 17 4184Google Scholar
计量
- 文章访问数: 3822
- PDF下载量: 61
- 被引次数: 0