-
光谱诊断在等离子体刻蚀、材料处理、等离子体设备和工艺开发, 以及航天等离子体推进等领域得到了广泛的应用. 光谱诊断依赖的碰撞辐射模型会受到碰撞截面等基础物理数据所含偏差的影响, 导致诊断结果出现误差. 针对这一问题, 本文开发了一种基于前馈神经网络的等离子体光谱解算方法. 通过对比新方法与以往常用的最小二乘诊断方法的误差特性, 发现神经网络诊断方法能够通过辨识光谱向量的主要特征, 减小基础数据偏差向诊断结果的传递. 对实验光谱数据的分析进一步印证了这一点. 本文还对神经网络算法对抗基础数据偏差的机理进行了分析. 这种方法在等离子体参数在线监测、成像监测海量数据处理等领域具有良好的应用前景.Optical emission spectroscopy (OES) has been widely applied to plasma etching, material processing, development of plasma equipment and technology, as well as plasma propulsion. The collisional-radiative model used in OES is affected by the deviation of fundamental data such as collision cross sections, thus leading to the error in diagnostic results. In this work, a novel method is developed based on feedforward neural network for OES. By comparing the error characteristics of the new method with those of the traditional least-square diagnostic method, it is found that the neural network diagnosis method can reduce the transmission of basic data deviation to the diagnosis results by identifying the characteristics of the spectral vector. This is confirmed by the experimental results. Finally, the mechanism of the neural network algorithm against fundamental data deviation is analyzed. This method also has a good application prospect in plasma parameter online monitoring, imaging monitoring and mass data processing.
[1] Donnelly, Vincent M, Avinoam K 2013 J. Vac. Sci. Technol., A 31 050825Google Scholar
[2] 曲鹏程, 唐代飞, 向鹏飞, 袁安波 2017 电子科技 30 153Google Scholar
Qu P C, Tang D F, Xiang P F, Yuan A B 2017 Electr. Sci. Technol. 30 153Google Scholar
[3] Edy R, Huang G S, Zhao Y T, Guo Y, Zhang J, Mei Y F, Shi J J 2017 Surf. Coat. Technol. 329 149Google Scholar
[4] 王巍, 叶甜春, 李兵, 陈大鹏, 刘明 2005 半导体技术 30 13Google Scholar
Wang W, Ye T C, Li B, Chen D P, Liu M 2005 Semiconductor Technol. 30 13Google Scholar
[5] 王巍, 王玉青, 孙江宏, 兰中文, 龚云贵 2008 红外与激光工程 4 748Google Scholar
Wang W, Wang Y Q, Sun J H, Lan Z W, Gong Y G 2008 Infrared Laser Eng. 4 748Google Scholar
[6] Sridhar S, Donnelly V M, Liu L, Economou D J 2016 J. Vac. Sci. Technol., A 34 061303Google Scholar
[7] Gao J, Zhou L, Liang J, Wang Z, Wu Y, Muhammad J, Dong X, Li S, Yu H, Quan X 2018 Nano Res. 11 1470Google Scholar
[8] Kyung K, Winderbaum S, Hameiri Z 2017 Surf. Coat. Technol. 328 204Google Scholar
[9] Yang J, Yokota S, Kaneko R, Komurasaki K 2010 Phys. Plasmas 17 103504Google Scholar
[10] Zhu X M, Wang Y F, Wang Y, Yu D R, Zatsarinny O, Bartschat K, Tsankov T V, Czarnetzki U 2019 Plasma Sources Sci. Technol. 28 105005Google Scholar
[11] Donnelly V M 2004 J. Phys. D: Appl. Phys. 3 7
[12] Stafford L, Khare R, Donnelly V M, Margot J, Moisan M 2009 Appl. Phys. Lett. 94 021503Google Scholar
[13] Wang Q, Koleva I, Donnelly V M, Economou D J 2005 J. Phys. D: Appl. Phys. 38 1690Google Scholar
[14] Huang X J, Zhang J, Guo Y, Zhang J, Shi J J 2014 IEEE Trans. Plasma Sci. 42 3569Google Scholar
[15] 孙殿平 2008 博士学位论文 (上海: 华东师范大学)
Sun D P 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)
[16] 刘冲, 何湘, 朱卫华 2016 光谱学与光谱分析 S1 469
Liu C, He X, Zhu W H 2016 Spectrosc. Spect. Anal. S1 469
[17] Zhu X M, Pu Y K 2009 J. Phys. D: Appl. Phys. 43 015204
[18] Zhu X M, Pu Y K 2010 J Phys. D: Appl. Phys. 43 403001Google Scholar
[19] Zhu X M, Chen W C, Li J, Cheng Z W, Pu Y K 2012 Plasma Sources Sci. Technol. 21 045009Google Scholar
[20] Boffard J B, Lin C C, DeJoseph C A 2004 J. Phys. D: Appl. Phys. 37 R 37 R143Google Scholar
[21] Sadeghi N, Setser D W 2001 J. Chem. Phys. 115 3144
[22] Weber T, Boffard J B, Lin C C 2003 Phys. Rev. A 68 032719Google Scholar
[23] Sharma L, Srivastava R, Stauffer A D 2011 Eur. Phys. J. D 62 399Google Scholar
[24] Zatsarinny O, Bartschat K 2013 J. Phys. B: At. Mol. Opt. 46 112001Google Scholar
[25] Bray I, Fursa D, Kadyrov A, Stelbovicsa A T, Kheifets A S, Mukhamedzhanov A M 2012 Phys. Rep. 520 135Google Scholar
[26] Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Chin. Phys. Lett. 31 033401Google Scholar
[27] Boffard J B, Jung R O, Lin C C, Wendt A E 2009 Plasma Sources Sci. Technol. 18 035017Google Scholar
[28] Boffard J B, Jung R O, Lin C C, Wendt A E 2010 Plasma Sources Sci. Technol. 19 065001Google Scholar
[29] Terzi M, Masiero C, Beghi A, Maggipinto M, Susto G A 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry Modena, Italy, September 11−13, 2017 p17244916
[30] Wang C Y, Hsu C C 2019 Plasma Sources Sci. Technol. 28 105013Google Scholar
[31] 康志伟, 刘拓, 刘劲, 马辛, 陈晓 2020 69 069701Google Scholar
Kang Z W, Liu T, Liu J, Ma X, Chen X 2020 Acta Phys. Sin. 69 069701Google Scholar
[32] 丁刚, 钟诗胜 2007 2 1224Google Scholar
Ding G, Zhong S S 2007 Acta Phys. Sin. 2 1224Google Scholar
[33] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 69 014209Google Scholar
Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209Google Scholar
[34] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 68 130701Google Scholar
Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lv D S 2019 Acta Phys. Sin. 68 130701Google Scholar
[35] 王鹏举, 范俊宇, 苏艳, 赵纪军 2020 69 238702
Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702
[36] 彭相洲, 陈雨 2020 计算机应用研究 37 47
Peng X Z, Chen Y 2020 Appl. Res. Com. 37 47 (in Chinese)
[37] 孟圣峰 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Meng S F 2019 M. S. Thesis (Harbin: Harbin Institute of Technology)(in Chinese)
[38] Zhu X M, Pu Y K 2008 Plasma Sources Sci. Technol. 17 024002Google Scholar
[39] Abdollah S, Nikiforov A Y, Leys C 2010 Phys. Plasmas 17 063504Google Scholar
[40] Zhu X M, Chen W C, Li J, Pu Y K 2008 J. Phys. D: Appl. Phys. 42 025203
-
图 6 网络预测结果与训练目标的对应关系 (a)电子温度的对应关系; (b)电子密度的对应关系; (c)电子温度的预测误差; (d)电子密度的预测误差
Fig. 6. Corresponding relationship between the network prediction result and the training target: (a) Corresponding relationship of the electron temperature; (b) corresponding relationship of the electron density; (c) prediction error of the electron temperature; (d) prediction error of the electron density.
图 11 (a)考夫曼离子源中电子密度的诊断结果; (b)考夫曼离子源中电子温度的诊断结果; (c)最小二乘方法和神经网络方法获得的电子密度结果的相对误差; (d)最小二乘方法和神经网络方法获得的电子温度结果的相对误差. “探针”、“最小二乘”和“神经网络”分别表示由朗缪尔探针、最小二乘方法和神经网络方法获得的诊断结果
Fig. 11. (a) Diagnostic results of ne in Kaufman ion source; (b) diagnostic results of Te in Kaufman ion source; (c) relative error of ne by least-square method and neural network method; (d) relative error of Te by least-square method and neural network method. “探针”, “最小二乘”, “神经网络” denotes the diagnostic results obtained by Langmuir probe, least-square diagnostic method and neural network diagnostic method, respectively.
表 1 本文研究中选用的氙谱线表
Table 1. Xenon spectral lines used in this work.
序号 波长/nm 上能级 序号 波长/nm 上能级 1 460.303 5p4(3P2)6p $ {}^{2}{\left[1\right]}_{3/2}^\circ $ 9 834.745 5p5($ {}^{2}{\mathrm{P}}_{1/2}^\circ $)6p 2[3/2]2 2 484.433 5p4(3P2)6p $ {}^{2}{\left[3\right]}_{7/2}^\circ $ 10 840.919 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[3/2]1 3 492.148 5p4(3P1)6p $ {}^{2}{\left[2\right]}_{5/2}^\circ $ 11 881.941 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[5/2]3 4 529.222 5p4(3P2)6p $ {}^{2}{\left[2\right]}_{5/2}^\circ $ 12 895.225 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[3/2]2 5 541.915 5p4(3P2)6p $ {}^{2}{\left[3\right]}_{5/2}^\circ $ 13 904.545 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[5/2]2 6 788.739 5p5(2P°1/2)6p 2[1/2]0 14 916.265 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[3/2]1 7 823.163 5p5(2P°3/2)6p 2[3/2]2 15 979.970 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[1/2]1 8 828.012 5p5(2P°3/2)6p 2[1/2]0 16 992.320 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[5/2]2 -
[1] Donnelly, Vincent M, Avinoam K 2013 J. Vac. Sci. Technol., A 31 050825Google Scholar
[2] 曲鹏程, 唐代飞, 向鹏飞, 袁安波 2017 电子科技 30 153Google Scholar
Qu P C, Tang D F, Xiang P F, Yuan A B 2017 Electr. Sci. Technol. 30 153Google Scholar
[3] Edy R, Huang G S, Zhao Y T, Guo Y, Zhang J, Mei Y F, Shi J J 2017 Surf. Coat. Technol. 329 149Google Scholar
[4] 王巍, 叶甜春, 李兵, 陈大鹏, 刘明 2005 半导体技术 30 13Google Scholar
Wang W, Ye T C, Li B, Chen D P, Liu M 2005 Semiconductor Technol. 30 13Google Scholar
[5] 王巍, 王玉青, 孙江宏, 兰中文, 龚云贵 2008 红外与激光工程 4 748Google Scholar
Wang W, Wang Y Q, Sun J H, Lan Z W, Gong Y G 2008 Infrared Laser Eng. 4 748Google Scholar
[6] Sridhar S, Donnelly V M, Liu L, Economou D J 2016 J. Vac. Sci. Technol., A 34 061303Google Scholar
[7] Gao J, Zhou L, Liang J, Wang Z, Wu Y, Muhammad J, Dong X, Li S, Yu H, Quan X 2018 Nano Res. 11 1470Google Scholar
[8] Kyung K, Winderbaum S, Hameiri Z 2017 Surf. Coat. Technol. 328 204Google Scholar
[9] Yang J, Yokota S, Kaneko R, Komurasaki K 2010 Phys. Plasmas 17 103504Google Scholar
[10] Zhu X M, Wang Y F, Wang Y, Yu D R, Zatsarinny O, Bartschat K, Tsankov T V, Czarnetzki U 2019 Plasma Sources Sci. Technol. 28 105005Google Scholar
[11] Donnelly V M 2004 J. Phys. D: Appl. Phys. 3 7
[12] Stafford L, Khare R, Donnelly V M, Margot J, Moisan M 2009 Appl. Phys. Lett. 94 021503Google Scholar
[13] Wang Q, Koleva I, Donnelly V M, Economou D J 2005 J. Phys. D: Appl. Phys. 38 1690Google Scholar
[14] Huang X J, Zhang J, Guo Y, Zhang J, Shi J J 2014 IEEE Trans. Plasma Sci. 42 3569Google Scholar
[15] 孙殿平 2008 博士学位论文 (上海: 华东师范大学)
Sun D P 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)
[16] 刘冲, 何湘, 朱卫华 2016 光谱学与光谱分析 S1 469
Liu C, He X, Zhu W H 2016 Spectrosc. Spect. Anal. S1 469
[17] Zhu X M, Pu Y K 2009 J. Phys. D: Appl. Phys. 43 015204
[18] Zhu X M, Pu Y K 2010 J Phys. D: Appl. Phys. 43 403001Google Scholar
[19] Zhu X M, Chen W C, Li J, Cheng Z W, Pu Y K 2012 Plasma Sources Sci. Technol. 21 045009Google Scholar
[20] Boffard J B, Lin C C, DeJoseph C A 2004 J. Phys. D: Appl. Phys. 37 R 37 R143Google Scholar
[21] Sadeghi N, Setser D W 2001 J. Chem. Phys. 115 3144
[22] Weber T, Boffard J B, Lin C C 2003 Phys. Rev. A 68 032719Google Scholar
[23] Sharma L, Srivastava R, Stauffer A D 2011 Eur. Phys. J. D 62 399Google Scholar
[24] Zatsarinny O, Bartschat K 2013 J. Phys. B: At. Mol. Opt. 46 112001Google Scholar
[25] Bray I, Fursa D, Kadyrov A, Stelbovicsa A T, Kheifets A S, Mukhamedzhanov A M 2012 Phys. Rep. 520 135Google Scholar
[26] Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Chin. Phys. Lett. 31 033401Google Scholar
[27] Boffard J B, Jung R O, Lin C C, Wendt A E 2009 Plasma Sources Sci. Technol. 18 035017Google Scholar
[28] Boffard J B, Jung R O, Lin C C, Wendt A E 2010 Plasma Sources Sci. Technol. 19 065001Google Scholar
[29] Terzi M, Masiero C, Beghi A, Maggipinto M, Susto G A 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry Modena, Italy, September 11−13, 2017 p17244916
[30] Wang C Y, Hsu C C 2019 Plasma Sources Sci. Technol. 28 105013Google Scholar
[31] 康志伟, 刘拓, 刘劲, 马辛, 陈晓 2020 69 069701Google Scholar
Kang Z W, Liu T, Liu J, Ma X, Chen X 2020 Acta Phys. Sin. 69 069701Google Scholar
[32] 丁刚, 钟诗胜 2007 2 1224Google Scholar
Ding G, Zhong S S 2007 Acta Phys. Sin. 2 1224Google Scholar
[33] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 69 014209Google Scholar
Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209Google Scholar
[34] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 68 130701Google Scholar
Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lv D S 2019 Acta Phys. Sin. 68 130701Google Scholar
[35] 王鹏举, 范俊宇, 苏艳, 赵纪军 2020 69 238702
Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702
[36] 彭相洲, 陈雨 2020 计算机应用研究 37 47
Peng X Z, Chen Y 2020 Appl. Res. Com. 37 47 (in Chinese)
[37] 孟圣峰 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Meng S F 2019 M. S. Thesis (Harbin: Harbin Institute of Technology)(in Chinese)
[38] Zhu X M, Pu Y K 2008 Plasma Sources Sci. Technol. 17 024002Google Scholar
[39] Abdollah S, Nikiforov A Y, Leys C 2010 Phys. Plasmas 17 063504Google Scholar
[40] Zhu X M, Chen W C, Li J, Pu Y K 2008 J. Phys. D: Appl. Phys. 42 025203
计量
- 文章访问数: 6615
- PDF下载量: 163
- 被引次数: 0