搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子散射和能量分配方式对电子输运系数的影响

宋萌萌 周前红 孙强 张含天 杨薇 董烨

引用本文:
Citation:

电子散射和能量分配方式对电子输运系数的影响

宋萌萌, 周前红, 孙强, 张含天, 杨薇, 董烨

Influence of electron scattering and energy partition method on electron transport coefficient

Song Meng-Meng, Zhou Qian-Hong, Sun Qiang, Zhang Han-Tian, Yang Wei, Dong Ye
PDF
HTML
导出引用
  • 电子输运系数是确保低温等离子体建模准确性的关键因素, 通过模拟电子的输运过程可对其数值求解. 在模拟电子输运时, 电子和中性粒子碰撞后的散射和能量分配方式有多种处理方法. 为了研究不同处理方法对电子输运系数的影响, 本文基于蒙特卡罗碰撞方法, 建立了电子输运系数的计算模型, 模拟约化电场10—1000 Td (1 Td = 10–21 V·m2)氢原子气中的电子输运过程. 计算结果表明, 各向同性假设对电子输运系数的影响随电场强度增加而增加, 但即使对于较低的约化电场(10 Td), 各向异性散射假设下电子的平均能量、通量迁移率和通量扩散系数也分别比各向同性假设下的值高38.34%, 17.38%和119.18%. 不同的能量分配方式对中高电场强度下(> 200 Td)的电子输运系数影响较为显著. 在高电场时, 均分法计算得出的电子平均能量、通量迁移率和通量扩散系数均小于零分法对应的值, 汤森电离系数则相反. Opal法得出的电子输运系数介于均分法和零分法之间. 此外, 考虑各向异性散射时, 不同能量分配方式对输运系数的影响高于各向同性. 本研究表明, 在计算电子输运系数时需要考虑各向异性的电子散射, 高电场条件下尤其要注意能量分配方式的选择.
    The veracity of a low temperature plasma model is limited by the accuracy of the electron transport coefficient, which can be solved by simulating the electron transport process. When simulating the transport properties of electrons, there are a variety of approaches to dealing with the scattering of electrons and energy partition between the primary-electrons and secondary-electrons after electron-neutral particles’ collision. In this paper used is a model based on the Monte Carlo collision method to investigate the influence of scattering method and energy partition method on the electron transport coefficient. The electron energy distribution function, electron mean energy, flux mobility and diffusion coefficients, as well as the Townsend ionization coefficients are calculated in the hydrogen atom gas under a reduced electric field from 10 to 1000 Td. The calculation results show that the influence of the isotropic scattering assumption on the electron transport coefficients increases with reduced electric field increasing. However, even under a relatively low reduced electric field (10 Td), the calculated mean energy, flux mobility, and flux diffusion coefficient of electrons under the assumption of anisotropic scattering are 39.68%, 17.38% and 119.18% higher than those under the assumption of the isotropic scattering. The different energy partition methods have a significant influence on the electron transport coefficient under a medium-to-high reduced electric field (> 200 Td). Under a high electric field, the mean energy, flux mobility and flux diffusion coefficient calculated by the equal-partition method (the primary and secondary electrons equally share the available energy) are all less than the values from the zero-partition method (the energy of secondary-electrons is assigned to zero). While the change of Townsend ionization coefficient with reduced electric fields shows a different trend. The electron transport coefficient obtained by the Opal method lies between the values from the equal-partition method and the zero-partition method. In addition, considering the anisotropic scattering, the influence of energy partition method on the transport coefficient is higher than that under the assumption of isotropic scattering. This study shows the necessity of considering the anisotropic electron scattering for calculating the electron transport coefficient, and special attention should be paid to the choice of energy partition method under a high reduced electric field.
      通信作者: 周前红, zhou_qianhong@qq.com
    • 基金项目: 国家自然科学基金(批准号: 12005023, 11775032, 11875094)和中国工程物理研究院院长基金(批准号: YZJJLX2019013)资助的课题
      Corresponding author: Zhou Qian-Hong, zhou_qianhong@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12005023, 11775032, 11875094) and the Foundation of President of China Academy of Engineering Physics (Grant No. YZJJLX2019013)
    [1]

    Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead J C, Murphy A B, Gutsol A F, Starikovskaia S 2012 J. Phys. D: Appl. Phys. 45 253001Google Scholar

    [2]

    Petrović Z L, Dujko S, Marić D, Malović G, Nikitović Ž, Šašić O, Jovanović J, Stojanović V, Radmilović-Rađenović M 2009 J. Phys. D: Appl. Phys. 42 194002Google Scholar

    [3]

    Konovalov D A, Cocks D G, White R D 2017 Eur. Phy. J. D 71 258Google Scholar

    [4]

    Stephens J 2018 J. Phys. D: Appl. Phys. 51 125203Google Scholar

    [5]

    Dutton J 1975 J. Phys. Chem. Ref. Data 4 577Google Scholar

    [6]

    Hagelaar G, Pitchford L 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [7]

    Rabie M, Franck C M 2016 Comput. Phys. Commun. 203 268Google Scholar

    [8]

    Gallagher J, Beaty E, Dutton J, Pitchford L 1983 J. Phys. Chem. Ref. Data 12 109Google Scholar

    [9]

    Banković A, Dujko S, White R D, Buckman S, Petrović Z L 2012 Eur. Phy. J. D 66 174Google Scholar

    [10]

    Kortshagen U, Parker G, Lawler J 1996 Phys. Rev. E 54 6746Google Scholar

    [11]

    Yousfi M, Hennad A, Alkaa A 1994 Phys. Rev. E 49 3264Google Scholar

    [12]

    Longo S 2000 Plasma Sources Sci. Technol. 9 468Google Scholar

    [13]

    Dujko S, White R D, Petrović Z L 2008 J. Phys. D: Appl. Phys. 41 245205Google Scholar

    [14]

    孙安邦, 李晗蔚, 许鹏, 张冠军 2017 66 195101Google Scholar

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101Google Scholar

    [15]

    Phelps A, Pitchford L 1985 Phys. Rev. A 31 2932Google Scholar

    [16]

    Janssen J, Pitchford L, Hagelaar G, van Dijk 2016 Plasma Sources Sci. Technol. 25 055026Google Scholar

    [17]

    Yang W, Meng X, Zhou Q, Dong Z 2019 AIP Adv. 9 035041Google Scholar

    [18]

    Opal C, Peterson W, Beaty E 1971 J. Chem. Phys. 55 4100Google Scholar

    [19]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar

    [20]

    Yoshida S, Phelps A, Pitchford L 1983 Phys. Rev. A 27 2858Google Scholar

    [21]

    Tzeng Y, Kunhardt E 1986 Phys. Rev. A 34 2148Google Scholar

    [22]

    周前红, 董志伟, 简贵胄, 周海京 2015 64 205206Google Scholar

    Zhou Q H, Dong Z W, Jian G Z, Zhou H J 2015 Acta Phys. Sin. 64 205206Google Scholar

    [23]

    Surendra M, Graves D, Jellum G 1990 Phys. Rev. A 41 1112Google Scholar

    [24]

    Jiang P, Economou D J 1993 J. Appl. Phys. 73 8151Google Scholar

    [25]

    Nolan A, Brennan M J, Ness K, Wedding A 1997 J. Phys. D: Appl. Phys. 30 2865Google Scholar

    [26]

    Dalgarno A, Yan M, Liu W 1999 Astrophys. J. Suppl. Ser. 125 237Google Scholar

    [27]

    Janev R K, Smith J J http://www-amdis.iaea.org [2021-2-7]

    [28]

    Hagelaar G http://www.bolsig.laplace.univ-tlse.fr/ [2021-2-7]

    [29]

    Belenguer P, Pitchford L 1999 J. Appl. Phys. 86 4780Google Scholar

  • 图 1  电子与氢原子弹性和电离碰撞的截面数据

    Fig. 1.  Elastic and ionization cross sections between electron and hydrogen atoms.

    图 2  MCC模型和BOLSIG+软件在约化电场为10, 20, 100和1000 Td计算出的EEDF对比(电子散射各向同性, 能量均分). 实线和虚线分别代表MCC模型和BOLSIG+软件的计算结果

    Fig. 2.  Comparison of EEDF calculated by MCC model and BOLSIG+ software with isotropic scattering and equally energy partition under the reduced fields of 10, 20, 100 and 1000 Td. Dashed lines from MCC, and solid lines from BOLSIG+ software.

    图 3  MCC模型和BOLSIG+软件计算出的电子输运系数对比(电子散射各向同性, 均分法) (a)电子平均能量; (b)电离系数; (c)横向扩散系数; (d)迁移系数. 橙色实线和绿色虚线分别为使用BOLSIG+软件和MCC法计算的结果

    Fig. 3.  Comparison of electron transport coefficients calculated by MCC model and BOLSIG+ software with isotropic scattering and equally energy partition: (a) Mean energy; (b)Townsend ionization coefficients; (c) flux diffusion coefficients; (d) flux mobility. Dashed-orange lines from MCC, and solid-green lines from BOLSIG+ software.

    图 4  不同散射条件下电子能量分布函数和沿电场方向的速度概率函数在约化电场为10, 20和100 Td时的值 (a)电子能量分布函数; (b)沿电场方向电子速度概率函数. 图中实线为各向异性散射, 虚线为各向同性散射

    Fig. 4.  (a) Electron energy distribution function and (b) the probability function of velocity along the electric field direction with different scattering for reduced fields 10, 20 and 100 Td. Dashed lines from isotropic scattering, and solid lines from anisotropic scattering.

    图 5  电子散射各向同性和各向异性条件下电子输运系数和平均能量的计算结果对比 (a)电子平均能量; (b)电离系数; (c)横向扩散系数; (d)迁移系数. 图中方块代表各向异性, 圆点代表各向同性

    Fig. 5.  Comparison of electron transport coefficients calculated assuming isotropic and anisotropic scattering: (a) Mean energy; (b) townsend ionization coefficients; (c) flux diffusion coefficients; (d) flux mobility. The orange rectangle and green circle represent the results assuming the anisotropic and isotropic scattering, respectively.

    图 6  不同能量分配下电子的速度相图 (a)均分法; (b)Opal法; (c)零分法. 图中圆点代表散射电子, 三角形代表二次电子

    Fig. 6.  The velocity phase diagram of electrons using different energy partition methods: (a) Equal-division method; (b) opal method; (c) zero-division method. Blue dots represent the primary electrons, and orange triangles represent secondary electrons.

    图 7  不同散射和能量分配方式下电子输运系数和平均能量的计算结果对比 (a)电子平均能量; (b)电离系数; (c)横向扩散系数; (d)迁移系数. 图中方块、圆点和三角依次代表均分、Opal和零分法. 实线和虚线分别代表各向异性和各向同性散射

    Fig. 7.  Comparison of electron transport coefficients calculated with different scattering and energy partition methods: (a) Mean energy; (b) Townsend ionization coefficients; (c) flux diffusion coefficients; (d) flux mobility. The rectangle, circle, and triangles represent the calculation results using the equal-division, Opal and zero-division method, respectively. Dashed/solid lines are the results assuming the isotropic/anisotropic scattering.

    表 1  约化电场为1000 Td时, 均分法和零分法在不同电子散射下电子输运系数的差异

    Table 1.  Difference between the electron transport coefficients using the equal and zero-division method, assuming anisotropic and isotropic scattering, respectively.

    电子散射$\left\langle\varepsilon \right\rangle$$ \alpha $$ {\mu }_{\rm{f}} $$ {D}_{\rm{f}} $
    各向同性20.92%28.67%0.76%30.50%
    各项异性29.22%42.60%20.75%45.06%
    注: 计算方法为$({A_{{\rm{equal}}}} - {A_{{\rm{zero}}}})/{A_{{\rm{zero}}}}$, A代表电子平均能量和输运系数的值.
    下载: 导出CSV
    Baidu
  • [1]

    Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead J C, Murphy A B, Gutsol A F, Starikovskaia S 2012 J. Phys. D: Appl. Phys. 45 253001Google Scholar

    [2]

    Petrović Z L, Dujko S, Marić D, Malović G, Nikitović Ž, Šašić O, Jovanović J, Stojanović V, Radmilović-Rađenović M 2009 J. Phys. D: Appl. Phys. 42 194002Google Scholar

    [3]

    Konovalov D A, Cocks D G, White R D 2017 Eur. Phy. J. D 71 258Google Scholar

    [4]

    Stephens J 2018 J. Phys. D: Appl. Phys. 51 125203Google Scholar

    [5]

    Dutton J 1975 J. Phys. Chem. Ref. Data 4 577Google Scholar

    [6]

    Hagelaar G, Pitchford L 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [7]

    Rabie M, Franck C M 2016 Comput. Phys. Commun. 203 268Google Scholar

    [8]

    Gallagher J, Beaty E, Dutton J, Pitchford L 1983 J. Phys. Chem. Ref. Data 12 109Google Scholar

    [9]

    Banković A, Dujko S, White R D, Buckman S, Petrović Z L 2012 Eur. Phy. J. D 66 174Google Scholar

    [10]

    Kortshagen U, Parker G, Lawler J 1996 Phys. Rev. E 54 6746Google Scholar

    [11]

    Yousfi M, Hennad A, Alkaa A 1994 Phys. Rev. E 49 3264Google Scholar

    [12]

    Longo S 2000 Plasma Sources Sci. Technol. 9 468Google Scholar

    [13]

    Dujko S, White R D, Petrović Z L 2008 J. Phys. D: Appl. Phys. 41 245205Google Scholar

    [14]

    孙安邦, 李晗蔚, 许鹏, 张冠军 2017 66 195101Google Scholar

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101Google Scholar

    [15]

    Phelps A, Pitchford L 1985 Phys. Rev. A 31 2932Google Scholar

    [16]

    Janssen J, Pitchford L, Hagelaar G, van Dijk 2016 Plasma Sources Sci. Technol. 25 055026Google Scholar

    [17]

    Yang W, Meng X, Zhou Q, Dong Z 2019 AIP Adv. 9 035041Google Scholar

    [18]

    Opal C, Peterson W, Beaty E 1971 J. Chem. Phys. 55 4100Google Scholar

    [19]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar

    [20]

    Yoshida S, Phelps A, Pitchford L 1983 Phys. Rev. A 27 2858Google Scholar

    [21]

    Tzeng Y, Kunhardt E 1986 Phys. Rev. A 34 2148Google Scholar

    [22]

    周前红, 董志伟, 简贵胄, 周海京 2015 64 205206Google Scholar

    Zhou Q H, Dong Z W, Jian G Z, Zhou H J 2015 Acta Phys. Sin. 64 205206Google Scholar

    [23]

    Surendra M, Graves D, Jellum G 1990 Phys. Rev. A 41 1112Google Scholar

    [24]

    Jiang P, Economou D J 1993 J. Appl. Phys. 73 8151Google Scholar

    [25]

    Nolan A, Brennan M J, Ness K, Wedding A 1997 J. Phys. D: Appl. Phys. 30 2865Google Scholar

    [26]

    Dalgarno A, Yan M, Liu W 1999 Astrophys. J. Suppl. Ser. 125 237Google Scholar

    [27]

    Janev R K, Smith J J http://www-amdis.iaea.org [2021-2-7]

    [28]

    Hagelaar G http://www.bolsig.laplace.univ-tlse.fr/ [2021-2-7]

    [29]

    Belenguer P, Pitchford L 1999 J. Appl. Phys. 86 4780Google Scholar

  • [1] 李炅远, 孟举, 王克栋. C4-离子的低能电子弹性散射研究:共振态与同分异构.  , 2024, 73(24): . doi: 10.7498/aps.73.20241377
    [2] 朱冰, 冯灏. 运用R矩阵方法研究低能电子与NO2分子的散射.  , 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [3] 孙安邦, 李晗蔚, 许鹏, 张冠军. 流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型.  , 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [4] 张辉, 杨洋, 李志青. 三维a-IGZO薄膜中的电子-电子散射.  , 2016, 65(16): 167301. doi: 10.7498/aps.65.167301
    [5] 李宏宇, 符淙斌, 郭维栋, 马芳. 干旱区不同下垫面能量分配机理及对微气候反馈的研究.  , 2015, 64(5): 059201. doi: 10.7498/aps.64.059201
    [6] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响.  , 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [7] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究.  , 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [8] 郑勇林, 王晓茜, 葛泽玲, 郭红力, 严刚峰, 戴松晖, 朱晓玲, 田晓滨. 铁磁非铁磁夹层中电子自旋波的传输及应用.  , 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [9] 杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 刘腊群, 彭凯, 夏蒙重. 体积产生负氢离子能量沉积及引出效率数值模拟研究.  , 2012, 61(23): 235201. doi: 10.7498/aps.61.235201
    [10] 田密, 张秋菊, 白易灵, 崔春红. 电子在线极化相对论强度驻波场中的散射研究.  , 2012, 61(20): 203401. doi: 10.7498/aps.61.203401
    [11] 刘小良, 黄晓梅, 徐慧, 任意. Fibonacci序列的统计属性和电子输运系数.  , 2010, 59(6): 4202-4210. doi: 10.7498/aps.59.4202
    [12] 耿少飞, 唐德礼, 赵杰, 邱孝明. 圆柱形阳极层霍尔等离子体加速器的质点网格方法模拟.  , 2009, 58(8): 5520-5525. doi: 10.7498/aps.58.5520
    [13] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究.  , 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [14] 李小泽, 王建国, 童长江, 张 海. 充填不同气体相对论返波管特性的PIC-MCC模拟.  , 2008, 57(7): 4613-4622. doi: 10.7498/aps.57.4613
    [15] 施德恒, 孙金锋, 刘玉芳, 朱遵略, 马 恒. 50—5000 eV电子被C4H8O, C5H10O2, C6H5CH3和C4H8O2散射的总截面.  , 2008, 57(12): 7612-7618. doi: 10.7498/aps.57.7612
    [16] 施德恒, 孙金锋, 朱遵略, 刘玉芳. 一种考虑几何屏蔽效应的计算“电子-分子”散射总截面的可加性规则修正方法.  , 2008, 57(3): 1632-1639. doi: 10.7498/aps.57.1632
    [17] 施德恒, 孙金锋, 朱遵略, 杨向东, 刘玉芳, 马 恒. 中、高能电子被SO2分子散射的微分截面、动量转移截面及弹性积分截面.  , 2007, 56(8): 4435-4440. doi: 10.7498/aps.56.4435
    [18] 施德恒, 孙金锋, 刘玉芳, 马 恒, 朱遵略. 一种计算中、高能电子被分子散射总截面的修正势方法.  , 2006, 55(8): 4096-4102. doi: 10.7498/aps.55.4096
    [19] 施德恒, 孙金锋, 朱遵略, 刘玉芳, 杨向东. 中高能电子被O2及CF4分子散射的微分截面、弹性积分截面及动量转移截面.  , 2005, 54(8): 3548-3553. doi: 10.7498/aps.54.3548
    [20] 施德恒, 孙金锋, 杨向东, 朱遵略, 刘玉芳. 中高能电子被甲烷及氯代甲烷散射的总截面.  , 2005, 54(5): 2019-2024. doi: 10.7498/aps.54.2019
计量
  • 文章访问数:  5577
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-01-31
  • 上网日期:  2021-06-25
  • 刊出日期:  2021-07-05

/

返回文章
返回
Baidu
map