搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si衬底Cu2ZnSnS4太阳能电池的数值分析

刘辉城 许佳雄 林俊辉

引用本文:
Citation:

Si衬底Cu2ZnSnS4太阳能电池的数值分析

刘辉城, 许佳雄, 林俊辉

Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate

Liu Hui-Cheng, Xu Jia-Xiong, Lin Jun-Hui
PDF
HTML
导出引用
  • 在Si衬底上制备的Cu2ZnSnS4(CZTS)太阳能电池具有CZTS与Si衬底的晶格失配低的优点, 但目前其转换效率仍较低. 本文采用异质结太阳能电池仿真软件Afors-het对Si衬底CZTS太阳能电池进行数值计算. 对现有的p-CZTS/n-Si太阳能电池的计算结果表明, 在该电池结构中p-CZTS和n-Si分别起窗口层和吸收层的作用, 但p-CZTS具有高光吸收系数, 使大部分入射光无法透过p-CZTS层进而被n-Si吸收, 限制了电池的转换效率. 本文提出以p-Si作为衬底的n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池结构. 计算得到的p-CZTS/p-Si结构的暗态电流密度-电压(J–V)特性曲线均为线性曲线, 表明p-CZTS与p-Si为欧姆接触以及p-Si作为p-CZTS的背电极的可行性. 进一步计算了p-Si的厚度与掺杂浓度、p-CZTS的厚度与掺杂浓度对n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池光伏特性的影响, 在不考虑寄生串并联电阻效应和缺陷态的理想情况下, 电池的最高转换效率为28.41%. 本文计算结果表明, n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池可解决现有p-CZTS/n-Si结构存在的问题, 是一种合适的Si衬底CZTS太阳能电池结构.
    The Cu2ZnSnS4 (CZTS) solar cell prepared on Si substrate has an advantage of low lattice mismatch between CZTS and Si substrate, but the conversion efficiency of reported p-CZTS/n-Si solar cells is still low at present. In this work, the CZTS solar cells on Si substrate are calculated numerically by heterojunction solar cell simulation software Afors-het. The calculated results show that the p-CZTS and n-Si act as window layer and absorber respectively in the p-CZTS/n-Si solar cell because the band gap of p-CZTS is larger than that of n-Si. The conversion efficiency of p-CZTS/n-Si solar cell increases as the thickness of p-CZTS window layer decreases. The highest calculated conversion efficiency of p-CZTS/n-Si solar cell is 18.57%. In the best p-CZTS/n-Si solar cell, most of the incident light cannot pass through the p-CZTS window layer due to the high absorption coefficient of p-CZTS, which limits the conversion efficiency of solar cell. In order to solve the problems existing in the p-CZTS/n-Si structure, a novel n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell structure is proposed, where n-ZnO:Al and i-ZnO are window layers, n-CdS is buffer layer, p-CZTS is absorber, and p-Si is substrate and back electrode. The dark current density-voltage (J-V) characteristic curves of p-CZTS/p-Si structure varying with the thickness and doping concentration of p-Si and the doping concentration of p-CZTS are calculated to investigate the feasibility of p-Si as a back electrode of p-CZTS. All the calculated J-V characteristic curves of p-CZTS/p-Si structure are linear, indicating the formation of ohmic contact between p-CZTS and p-Si. The photovoltaic properties of n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell are further calculated. The built-in electric field distributed in n-ZnO:Al, i-ZnO, n-CdS, and p-CZTS contribute to the collection of photo-generated carriers. The conversion efficiency of n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell is enhanced with the decrease of the thickness of p-Si and the increase of doping concentrations of p-Si and p-CZTS and the thickness of p-CZTS. Without considering the effect of parasitic series resistance and parallel resistance and defect states, the highest conversion efficiency of ideal n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell is 28.41%. The calculated results in this work show that the n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell has an appropriate structure for CZTS solar cell on Si substrate.
      通信作者: 许佳雄, xujiaxiong@gdut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61504029)和广东省科技计划(批准号: 2017A010104017)资助的课题
      Corresponding author: Xu Jia-Xiong, xujiaxiong@gdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61504029) and the Science and Technology Project of Guangdong Province, China (Grant No. 2017A010104017)
    [1]

    Matsushita H, Ichikawa T, Katsui A 2005 J. Mater. Sci. 40 2003Google Scholar

    [2]

    Steinhagen C, Panthani M G, Akhavan V, Goodfellow B, Koo B, Korgel B A 2009 J. Am. Chem. Soc. 131 12554Google Scholar

    [3]

    Todorov T, Gunawan O, Chey S J, De Monsabert T G, Prabhakar A, Mitzi D B 2011 Thin Solid Films 519 7378Google Scholar

    [4]

    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi B 245 1772Google Scholar

    [5]

    Maklavani S E, Mohammadnejad S 2020 Sol. Energy 204 489Google Scholar

    [6]

    Nadaraja M, Singh O P, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3925Google Scholar

    [7]

    Akcay N, Ataser T, Ozen Y, Ozcelik S 2020 Thin Solid Films 704 138028Google Scholar

    [8]

    Karade V, Lokhande A, Babar P, Gang M G, Suryawanshi M, Patil P, Kim J H 2019 Sol. Energy Mater. Sol. Cells 200 109911Google Scholar

    [9]

    Ataca C, Topsakal M, Akturk E, Ciraci S 2011 J. Phys. Chem. C 115 16354Google Scholar

    [10]

    Song N, Young M, Liu F Y, Erslev P, Wilson S, Harvey S P, Teeter G, Huang Y D, Hao X J, Green M A 2015 Appl. Phys. Lett. 106 252102Google Scholar

    [11]

    Xu J X, Yang Y Z, Cao Z M, Xie Z W 2016 Optik 127 1567Google Scholar

    [12]

    Shin B H, Zhu Y, Gershon T, Bojarczuk N A, Guha S 2014 Thin Solid Films 556 9Google Scholar

    [13]

    Sheng X, Wang L, Tian Y, Luo Y P, Chang L T, Yang D R 2013 J. Mater. Sci.-Mater. Electron. 24 548Google Scholar

    [14]

    李琳, 文亚南, 董燕, 汪壮兵, 梁齐 2012 真空 49 45Google Scholar

    Li L, Wen Y N, Dong Y, Wang Z B, Liang Q 2012 Vacuum 49 45Google Scholar

    [15]

    Yeh M Y, Lei P H, Lin S H, Yang C D 2016 Materials 9 526Google Scholar

    [16]

    Singh S, Katiyar A K, Midya A, Ghorai A, Ray S K 2017 Nanotechnology 28 435704Google Scholar

    [17]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465Google Scholar

    [18]

    Varache R, Leendertz C, Gueunier-farret M E, Haschke J, Munoz D, Korte L 2015 Sol. Energy Mater. Sol. Cells 141 14Google Scholar

    [19]

    Amin N, Hossain M I, Chelvanathan P, Uzzaman A M, Sopian K 2010 International Conference on Electrical & Computer Engineering Dhaka, Bangladesh, December 18–20, 2010 p730

    [20]

    Jiang F, Shen H L, Wang W, Zhang L 2011 Appl. Phys. Express 4 074101Google Scholar

    [21]

    许佳雄, 姚若河 2012 61 187304Google Scholar

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304Google Scholar

    [22]

    Prabeesh P, Selvam I P, Potty S N 2016 Thin Solid Films 606 94Google Scholar

    [23]

    Ali K, Khan S A, Jafri M Z M 2014 Sol. Energy 101 1Google Scholar

    [24]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 17032Google Scholar

  • 图 1  仿真结构示意图 (a) p-CZTS/n-Si; (b) p-CZTS/p-Si; (c) n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si

    Fig. 1.  Diagrams of different structures: (a) p-CZTS/n-Si; (b) p-CZTS/p-Si; (c) n-ZnO:Al/i-ZnO/CdS/CZTS/p-Si.

    图 2  p-CZTS/n-Si太阳能电池性能随 (a) n-Si的厚度dn-Si, (b) n-Si的掺杂浓度Nn-Si, (c) p-CZTS的厚度dp-CZTS, (d) p-CZTS的掺杂浓度Np-CZTS的变化关系

    Fig. 2.  The performances of p-CZTS/n-Si solar cell with the changes of (a) the thickness of n-Si (dn-Si), (b) the doping concentration of n-Si (Nn-Si), (c) the thickness of p-CZTS (dp-CZTS), (d) the doping concentration of p-CZTS (Np-CZTS).

    图 3  最优p-CZTS/n-Si太阳能电池的 (a) J–V特性曲线, (b)光谱响应, (c)载流子产生率分布图

    Fig. 3.  The (a) J–V characteristic curve, (b) spectral response, (c) generation rate distribution of the optimal p-CZTS/n-Si solar cell

    图 4  p-CZTS/p-Si的J-V特性曲线随p-Si厚度dp-Si的变化

    Fig. 4.  J-V characteristic curves of p-CZTS/p-Si with the change of the thickness of p-Si (dp-Si).

    图 5  p-CZTS/p-Si的J-V特性曲线随p-Si掺杂浓度Np-Si的变化

    Fig. 5.  J-V characteristic curves of p-CZTS/p-Si with the change of the doping concentration of p-Si (Np-Si).

    图 6  p-Si掺杂浓度为 (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3时, p-CZTS/p-Si的能带图

    Fig. 6.  Band diagrams of p-CZTS/p-Si when the doping concentrations of p-Si are (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3

    图 7  p-CZTS/p-Si的J-V特性曲线随p-CZTS掺杂浓度Np-CZTS的变化

    Fig. 7.  J-V characteristic curves of p-CZTS/p-Si with the change of the doping concentration of p-CZTS (Np-CZTS).

    图 8  p-CZTS掺杂浓度为 (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3时, p-CZTS/p-Si的能带图

    Fig. 8.  Band diagrams of p-CZTS/p-Si when the doping concentrations of p-CZTS are (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3.

    图 9  n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池的性能随 (a) p-Si厚度dp-Si, (b) p-Si掺杂浓度Np-Si, (c) p-CZTS厚度dp-CZTS, (d) p-CZTS掺杂浓度Np-CZTS的变化关系

    Fig. 9.  The performances of n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell with the changes of (a) the thickness of p-Si (dp-Si), (b) the doping concentration of p-Si (Np-Si), (c) the thickness of p-CZTS (dp-CZTS), (d) the doping concentration of p-CZTS (Np-CZTS).

    图 10  优化的n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池的 (a) J–V特性曲线, (b)光谱响应, (c)内建电场, (d)能带图

    Fig. 10.  The (a) J–V characteristic curve, (b) spectral response, (c) built-in electric field, (d) band diagram of the optimal n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell.

    表 1  仿真参数取值

    Table 1.  Simulated parameters.

    参数p-CZTSn-CdSi-ZnOn-ZnOp-Sin-Si
    介电常数10109911.911.9
    电子亲和能/eV3.84.24.64.64.054.05
    禁带宽度/eV1.532.43.33.31.121.12
    导带有效密度/cm–32.2 × 10181.8 × 10192.2 × 10182.2 × 10183.32 × 10183.32 × 1018
    价带有效密度/cm–31.8 × 10192.4 × 10181.8 × 10191.8 × 10191.44 × 10191.44 × 1019
    电子迁移率/(cm2·V–1·s–1)10010010010014501450
    空穴迁移率/(cm2·V–1·s–1)57.6252525500500
    受主掺杂浓度/cm–3变量000变量0
    施主掺杂浓度/cm–301 × 10171 × 1051 × 10180变量
    缺陷浓度/cm–31 × 10126 × 10161 × 10171 × 1017
    电子俘获截面/cm24.13 × 10–141 × 10–171 × 10–121 × 10–12
    空穴俘获截面/cm24.13 × 10–111 × 10–131 × 10–151 × 10–15
    厚度/μm变量0.050.20.2变量变量
    下载: 导出CSV
    Baidu
  • [1]

    Matsushita H, Ichikawa T, Katsui A 2005 J. Mater. Sci. 40 2003Google Scholar

    [2]

    Steinhagen C, Panthani M G, Akhavan V, Goodfellow B, Koo B, Korgel B A 2009 J. Am. Chem. Soc. 131 12554Google Scholar

    [3]

    Todorov T, Gunawan O, Chey S J, De Monsabert T G, Prabhakar A, Mitzi D B 2011 Thin Solid Films 519 7378Google Scholar

    [4]

    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi B 245 1772Google Scholar

    [5]

    Maklavani S E, Mohammadnejad S 2020 Sol. Energy 204 489Google Scholar

    [6]

    Nadaraja M, Singh O P, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3925Google Scholar

    [7]

    Akcay N, Ataser T, Ozen Y, Ozcelik S 2020 Thin Solid Films 704 138028Google Scholar

    [8]

    Karade V, Lokhande A, Babar P, Gang M G, Suryawanshi M, Patil P, Kim J H 2019 Sol. Energy Mater. Sol. Cells 200 109911Google Scholar

    [9]

    Ataca C, Topsakal M, Akturk E, Ciraci S 2011 J. Phys. Chem. C 115 16354Google Scholar

    [10]

    Song N, Young M, Liu F Y, Erslev P, Wilson S, Harvey S P, Teeter G, Huang Y D, Hao X J, Green M A 2015 Appl. Phys. Lett. 106 252102Google Scholar

    [11]

    Xu J X, Yang Y Z, Cao Z M, Xie Z W 2016 Optik 127 1567Google Scholar

    [12]

    Shin B H, Zhu Y, Gershon T, Bojarczuk N A, Guha S 2014 Thin Solid Films 556 9Google Scholar

    [13]

    Sheng X, Wang L, Tian Y, Luo Y P, Chang L T, Yang D R 2013 J. Mater. Sci.-Mater. Electron. 24 548Google Scholar

    [14]

    李琳, 文亚南, 董燕, 汪壮兵, 梁齐 2012 真空 49 45Google Scholar

    Li L, Wen Y N, Dong Y, Wang Z B, Liang Q 2012 Vacuum 49 45Google Scholar

    [15]

    Yeh M Y, Lei P H, Lin S H, Yang C D 2016 Materials 9 526Google Scholar

    [16]

    Singh S, Katiyar A K, Midya A, Ghorai A, Ray S K 2017 Nanotechnology 28 435704Google Scholar

    [17]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465Google Scholar

    [18]

    Varache R, Leendertz C, Gueunier-farret M E, Haschke J, Munoz D, Korte L 2015 Sol. Energy Mater. Sol. Cells 141 14Google Scholar

    [19]

    Amin N, Hossain M I, Chelvanathan P, Uzzaman A M, Sopian K 2010 International Conference on Electrical & Computer Engineering Dhaka, Bangladesh, December 18–20, 2010 p730

    [20]

    Jiang F, Shen H L, Wang W, Zhang L 2011 Appl. Phys. Express 4 074101Google Scholar

    [21]

    许佳雄, 姚若河 2012 61 187304Google Scholar

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304Google Scholar

    [22]

    Prabeesh P, Selvam I P, Potty S N 2016 Thin Solid Films 606 94Google Scholar

    [23]

    Ali K, Khan S A, Jafri M Z M 2014 Sol. Energy 101 1Google Scholar

    [24]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 17032Google Scholar

  • [1] 兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌. 基于光子晶体的有机太阳能电池研究进展.  , 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [2] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究.  , 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [3] 敬婧, 李致朋, 卢伟胜, 王宏宇, 杨祖安, 杨毅, 尹祺圣, 杨馥菱, 沈晓明, 曾建民, 詹锋. 一种具有减反射性能的Cu2ZnSnS4太阳能电池透明导电氧化物薄膜.  , 2020, 69(23): 237801. doi: 10.7498/aps.69.20200897
    [4] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响.  , 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [5] 江风益, 刘军林, 张建立, 徐龙权, 丁杰, 王光绪, 全知觉, 吴小明, 赵鹏, 刘苾雨, 李丹, 王小兰, 郑畅达, 潘拴, 方芳, 莫春兰. 半导体黄光发光二极管新材料新器件新设备.  , 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [6] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算.  , 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [7] 张强, 王建元, 罗炳成, 邢辉, 金克新, 陈长乐. La1.3Sr1.7Mn2O7/SrTiO3-Nb异质结的整流和光伏特性.  , 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [8] 范巍, 曾雉. Cu2ZnSnS4晶界性质与光伏效应的第一性原理研究.  , 2015, 64(23): 238801. doi: 10.7498/aps.64.238801
    [9] 曹宇, 张建军, 严干贵, 倪牮, 李天微, 黄振华, 赵颖. 电极间距对μc-Si1-xGex:H薄膜结构特性的影响.  , 2014, 63(7): 076801. doi: 10.7498/aps.63.076801
    [10] 许佳雄, 姚若河. n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析.  , 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [11] 卢硕, 张跃, 尚家香. Si2CN4(010)表面特性的第一性原理研究.  , 2011, 60(2): 027302. doi: 10.7498/aps.60.027302
    [12] 陈鹏, 金克新, 陈长乐, 谭兴毅. La0.88 Te0.12 MnO3/Si异质结的整流和光伏特性研究.  , 2011, 60(6): 067303. doi: 10.7498/aps.60.067303
    [13] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征.  , 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [14] 万冀豫, 金克新, 谭兴毅, 陈长乐. Pr0.5Ca0.5MnO3/Si异质结输运特性和整流特性研究.  , 2010, 59(11): 8137-8141. doi: 10.7498/aps.59.8137
    [15] 余志强, 谢泉, 肖清泉, 赵珂杰. Mg2Si晶体结构及消光特性的研究.  , 2009, 58(10): 6889-6893. doi: 10.7498/aps.58.6889
    [16] 崔秀芝, 张天冲, 梅增霞, 刘章龙, 刘尧平, 郭阳, 苏希玉, 薛其坤, 杜小龙. 湿法刻蚀对Si基片孔点阵及ZnO外延薄膜周期形貌的影响.  , 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [17] 邢海英, 范广涵, 周天明. p,n型掺杂剂与Mn共掺杂GaN的电磁性质.  , 2009, 58(5): 3324-3330. doi: 10.7498/aps.58.3324
    [18] 唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊 胜, 黄小龙, 王传珊. 低能质子在半导体材料Si 和GaAs中的非电离能损研究.  , 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [19] 宋慧瑾, 郑家贵, 冯良桓, 蔡 伟, 蔡亚萍, 张静全, 李 卫, 黎 兵, 武莉莉, 雷 智, 鄢 强. CdTe太阳电池的不同背电极和背接触层的特性研究.  , 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [20] 彭少麒;苏子敏;刘景希. a-Si:H结的横向光生伏特效应.  , 1989, 38(8): 1235-1244. doi: 10.7498/aps.38.1235
计量
  • 文章访问数:  5438
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 修回日期:  2021-01-07
  • 上网日期:  2021-05-11
  • 刊出日期:  2021-05-20

/

返回文章
返回
Baidu
map