搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期调制结构平面薄膜电爆炸实验研究

刘永棠 盛亮 李阳 张金海 孟伦 李豪卿 袁媛 孙铁平 欧阳晓平

引用本文:
Citation:

周期调制结构平面薄膜电爆炸实验研究

刘永棠, 盛亮, 李阳, 张金海, 孟伦, 李豪卿, 袁媛, 孙铁平, 欧阳晓平

Explosion of thin flat foils with periodical modified structure

Liu Yong-Tang, Sheng Liang, Li Yang, Zhang Jin-Hai, Meng Lun, Li Hao-Qing, Yuan Yuan, Sun Tie-Ping, Ouyang Xiao-Ping
PDF
HTML
导出引用
  • 在金属层表面引入微结构以实现对Z箍缩等离子体形成和发展过程中不稳定性的调控具有重要研究价值. 在“强光一号”装置上(峰值电流~1.4 MA, 上升时间~100 ns), 开展了针对具有一维周期性凹槽调制结构的金属薄膜的电爆炸实验研究. 实验负载采用外推型平面结构, 基底为30 μm厚铝膜, 刻蚀周期为2 mm, 刻蚀深度约为10 μm. 通过激光阴影成像、激光干涉成像和可见光自辐射成像等系统进行联合诊断. 实验结果表明刻蚀结构对等离子体发展过程的不稳定性特征产生了明显调制作用, 原本征波长也受到抑制, 微结构周期对不稳定结构波长产生趋同效应; 未刻蚀一侧边界层同样受刻蚀层结构的影响, 在不稳定结构上表现出相似形貌, 且内外侧不稳定性特征的耦合关联性增强; 刻蚀凹槽处在爆炸过程中膨胀更为迅速, 形成的表面等离子体结构与初始结构反相; 在刻蚀结构的几何突变处会形成细长的等离子体喷流, 在二分之一刻蚀波长处出现波谱特征峰. 理论分析表明电流密度调制造成电热不稳定性分布改变是调控作用产生的重要原因.
    The fast Z-pinch plasma formation, exploding dynamics, and the evolution of the instability can be controlled experimentally by making special structures on metal surface layer to change the initial state of material, which is valuable for studying the Z-pinch physics. Experiments on the explosion of thin flat foils which have been etched into a periodical structure on surface are performed on the QG-1 facility (~1.4 MA peak current, ~100 ns rise time) in order to study the effects of different surface conditions on explosion and control the evolution of the instability in fast Z-pinch plasma. A kind of inverse load configuration is used in experiment in which the return current post is set at the central axial-position and two modified flat foils are strained outside symmetrically as the main load. So the corresponding J × B force directs outward from the return current post orthogonal to the foil plane, creating an acceleration and pushing the foil plasma away from the center in this configuration. Different surfaces of the foil are also investigated in different conditions because of the asymmetric magnetic field distribution which is useful to study the different evolutions of instability. The foils used in the experiment mainly are the 30-μm-thick aluminum foil. The wavelength of groove perturbations seeded on the surface is 2 mm wide and ~10 μm deep. The plasma explosion dynamic behaviors around conditioned area are diagnosed by laser shadowgraphy, laser interferometry, multiframe optical self-emission imaging and B-dot. It is found that the initially etched periodical structure on surface can control the plasma structure in exploding process which can be concluded as follows. Developing plasma structure shows a periodic character similar to the initial surface structure and the eigenwavelength of the Al is suppressed. In the meantime, the surface without etched perturbations is also influenced by the etched side, showing a similar instability structure but with a lower amplitude. The correlation between two surfaces turns stronger than the case of normal foils. A faster expanding rate occurs in the deep region of the initial periodical groove structure which causes a reverse structure to form. In the discontinuous area of the conditoned structure, a narrow stream of plasma jets perpendicularly from the metal surface which causes a half-wavelength to occur in spectrum analysis. The magneto-hydro-dynamic theory analysis shows that the change of electrothermal instabilities is caused dominantly by the modulation of current density flowing around the periodical structure.
      通信作者: 盛亮, shengliang@tsinghua.org.cn
    • 基金项目: 国家自然科学基金(批准号: 11575147)资助的课题
      Corresponding author: Sheng Liang, shengliang@tsinghua.org.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575147)
    [1]

    Jones B, Deeney C, McKenney J L, Garasi C J, Mehlhorn T A, Robinson A C, Wunsch S E, Bland S N, Lebedev S V, Chittenden J P, Bott S C, Ampleford D J, Palmer J B A, Rapley J, Hall G N, Oliver B V 2005 Phys. Rev. Lett. 95 225001Google Scholar

    [2]

    Hall G N 2007 Ph. D. Dissertation (London: Science of the University of London)

    [3]

    Hall G N, Chittenden J P, Bland S N, Lebedev S V, Bott S C, Jennings C, Palmer J B A, Suzuki-Vidal F 2008 Phys. Rev. Lett. 100 065003Google Scholar

    [4]

    盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜 2014 63 205203Google Scholar

    Sheng L, Li Y, Wu J, Yuan Y, Zhao J Z, Zhang M, Peng B D, Hei D W 2014 Acta Phys. Sin. 63 205203Google Scholar

    [5]

    盛亮, 李阳, 袁媛, 彭博栋, 李沫, 张美, 赵吉祯, 魏福利, 王亮平, 黑东炜, 邱爱慈 2014 63 055201Google Scholar

    Sheng L, Li Y, Yuan Y, Peng B D, Li M, Zhang M, Zhao J Z, Wei F L, Wang L P, Hei D W, Qiu A C 2014 Acta Phys. Sin. 63 055201Google Scholar

    [6]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar

    [7]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003Google Scholar

    [8]

    Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Peterson K J, Vesey R A, Nakhleh C, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2010 Phys. Rev. Lett. 105 185001Google Scholar

    [9]

    Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Jennings C A, Chittenden J P, Velikovich A L, Peterson K J, Vesey R A, Nakhleh C, Waisman E M, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2011 Phys. Plasmas 18 056301Google Scholar

    [10]

    Awe T J, Jennings C A, McBride R D, Cuneo M E, Lamppa D C, Martin M R, Rovang D C, Sinars D B, Slutz S A, Owen A C, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, Jones M C, McKenney J L, Robertson G K, Rochau G A, Savage M E, Schroen D G, Stygar W A 2014 Phys. Plasmas 21 056303Google Scholar

    [11]

    Awe T J, Peterson K J, Yu E P, McBride R D, Sinars D B, Gomez M R, Jennings C A, Martin M R, Rosenthal S E, Schroen D G, Sefkow A B, Slutz S A, Tomlinson K, Vesey R A 2016 Phys. Rev. Lett. 116 065001Google Scholar

    [12]

    Kantsyrev V L, Chuvatin A S, Safronova A S, Rudakov L I, Esaulov A A, Velikovich A L, Shrestha I, Astanovitsky A, Osborne G C, Shlyaptseva V V, Weller M E, Keim S, Stafford A, Cooper M 2014 Phys. Plasmas 21 031204Google Scholar

    [13]

    Lau Y Y, Zier J C, Rittersdorf I M, Weis M R, Gilgenbach R M 2011 Phys. Rev. E 83 066405Google Scholar

    [14]

    Zier J C, Gilgenbach R M, Chalenski D A, Lau Y Y, French D M, Gomez M R, Patel S G, Rittersdorf I M, Steiner A M, Weis M, Zhang P, Mazarakis M, Cuneo M E, Lopez M 2012 Phys. Plasmas 19 032701Google Scholar

    [15]

    Shelkovenko T A, Pikuz S A, Tilikin I N, Romanova V M, Mishin S N, Atoyan L, Hammer D A 2018 IEEE Trans. Plasma Sci. 46 3741Google Scholar

    [16]

    Shelkovenko T A, Pikuz S A, Tilikin I N, Mingaleev A R, Atoyan L, Hammer D A 2018 Plasma Phys. Rep. 44 236Google Scholar

    [17]

    Shelkovenko T A, Pikuz S A, Hammer D A 2016 Plasma Phy. Rep. 42 226Google Scholar

    [18]

    Rousskikh A G, Zhigalin A S, Oreshkin V I, Baksht R B 2020 Phys. Plasmas 27 033505Google Scholar

    [19]

    Clayson T, Lebedev S V, Suzuki-Vidal F, Burdiak G C, Halliday J W D, Hare J D, Ma J, Suttle L G, Tubman E R 2018 IEEE Trans. Plasma Sci. 46 3734Google Scholar

    [20]

    Hu Min, Kusse B R 2005 Phys. Plasmas 12 102701Google Scholar

    [21]

    Bland S N, Lebedev S V, Chittenden J P, Ampleford D J, Tang G 2004 Phys. Plasmas 11 4911Google Scholar

    [22]

    Swadling G F, Lebedev S V, Hall G N, Patankar S, Stewart N H, Smith R A, Harvey-Thompson A J, Burdiak G C, de Grouchy P, Skidmore J, Suttle L, Suzuki-Vidal F, Bland S N, Kwek K H, Pickworth L, Bennett M, Hare J D, Rozmus W, Yuan J 2014 Rev. Sci. Instrum. 85 11E502Google Scholar

    [23]

    Peterson K J, Awe T J, Yu E P, Sinars D B, Field E S, Cuneo M E, Herrmann M C, Savage M, Schroen D, Tomlinson K, Nakhleh C 2014 Phys. Rev. Lett. 112 135002Google Scholar

    [24]

    Oreshkin V I 2008 Phys. Plasmas 15 092103Google Scholar

  • 图 1  实验系统诊断布局

    Fig. 1.  Diagnostic system on “Qiangguang-1” facility.

    图 2  负载结构说明 (a) 负载三维组装图; (b) 初始状态激光阴影成像; (c) 薄膜受力分析示意图

    Fig. 2.  Structure of experimental load assembly: (a) Three-dimensional graph of the load; (b) laser shadow graph of the load in the initial stage; (c) force analysis of the foils in the planar geometry.

    图 3  铝膜表面凹槽型周期刻蚀结构共聚焦显微镜扫描图 (a) 刻蚀结构三维形貌图; (b) 二维平面扫描图, 其单个刻蚀周期长度测量值为2003.4 μm; (c) 方框区域深度扫描曲线, 红线间距为10.2 μm; (d) 方框对应区域放大形貌

    Fig. 3.  Scanning graph of the periodical groove structure exploited on Al foil surface which was measured by confocal imaging microscope: (a) Three-dimensional scanning image; (b) surface scanning image which shows that the measured period of structure is 2003.4 μm; (c) the depth curve in which the etched depth between the red lines is 10.2 μm; (d) the enlarged image corresponding to the region of green box in (b).

    图 4  不同实验发次下总电流波形汇总图

    Fig. 4.  Current trace for normal and etched cases.

    图 5  不同调制铝膜实验过程激光阴影图对比 (a) 标准铝膜119 ns时刻图(No. 16187); (b) 2 mm刻蚀周期结构铝膜114 ns时刻图(No. 19073); (c) 镀膜铝膜126 ns时刻图(No. 17228); (d) 2 mm刻蚀周期铝膜129 ns时刻图(No. 19074)

    Fig. 5.  Laser shadow graphy images for different Al foils in experiments: (a) Normal Al foil at 119 ns of No. 16187; (b) Al foil with 2 mm etched periodical structure at 114 ns of No. 19073; (c) coated Al foil at 126 ns of No. 17228; (d) Al foil with 2 mm etched periodical structure at 129 ns of No. 19074.

    图 6  边界不稳定结构波谱分析 (a) 标准铝膜, No. 16187; (b) 2 mm刻蚀周期结构铝膜, No. 19073; (c) 镀膜铝膜, No. 17228; (d) 2 mm刻蚀周期结构铝膜, No. 19074

    Fig. 6.  Wavelength spectra analysis of the instability structure in experiments: (a) No. 16187 for normal case; (b) No. 19073 for 2 mm periodical structure sample; (c) No. 17228 for coated sample; (d) No. 19074 for 2 mm periodical structure sample.

    图 7  滤波后的逆快速傅里叶变换重构图

    Fig. 7.  Reconstructure image of the result by inverse fast Fourier transform.

    图 8  1 mm刻蚀周期铝膜实验结果(No. 19067) (a) 90 ns时刻激光阴影图; (b)边界不稳定结构波谱分析

    Fig. 8.  Experiment results of the Al foil with 1 mm etched periodical structure (No. 19067): (a) The laser shadow graphy image at 90 ns; (b) the wavelength spectra analysis.

    图 9  2 mm刻蚀周期铝膜激光阴影图序列 (a) 实验发次与对应时刻, No. 19073-114 ns, No. 19074-129 ns, No. 19072-138 ns, No. 19060-158 ns; (b) 114 ns时刻下局部结构放大伪色图; (c) 129 ns时刻下局部结构放大伪色图; (b), (c)中右侧标尺代表颜色域与灰度值的对应关系

    Fig. 9.  Laser shadow graphy image sequence for the Al foils with 2 mm periodical structure: (a) Corresponding shot numbers are No. 19073-114 ns, No. 19074-129 ns, No. 19072-138 ns, No. 19060-158 ns; (b) enlarged image of the box at 114 ns; (c) enlarged image of the box at 129 ns. Flase color has been added in (b) and (c) where the corresponding relationship between color and gray-scale value is shown in the label on the right.

    图 10  初始薄膜刻蚀结构与实验发展过程结构对照 (a) 初始薄膜实物放置图; (b)初始状态侧向激光阴影成像图; (c) 实验激光阴影成像图

    Fig. 10.  Initial structure of foil surface comparing with developing plasma structure in experiments: (a) The photograph of actual etched foil; (b) the side-on laser shadow graphy image of Al foil before experiment; (c) corresponding shadow graphy image in experiment.

    图 11  刻蚀薄膜电爆炸过程早期可见光分幅图像, 其中实验发次No. 19274, 对应拍摄幅次与时刻依次为C1-37 ns, C2-57 ns, C3-77 ns, C4-97 ns

    Fig. 11.  Multiframe optical self-emission images of exploding etched Al foils for No. 19274. The frame number and shoot time are C1-37 ns, C2-57 ns, C3-77 ns, C4-97 ns respectively.

    图 12  周期性刻蚀结构与对应位置增长率示意图

    Fig. 12.  Periodical structure and the growth rate of the corresponding position.

    图 13  不同调制构型实验对比 (a)薄膜刻蚀取向沿z轴; (b)刻蚀平面丝阵与刻蚀平面薄膜对比; (c)二维刻蚀结构平面薄膜

    Fig. 13.  Different etched structure designed in future: (a) Etched along z axial; (b)planar array using etched wires; (c) two-dimensional etched structure on foil surface.

    表 1  金属薄膜参数

    Table 1.  Parameters of the foils used in the exploding experiments.

    材料M厚度 h/μm刻蚀槽深d/μm刻蚀周期p/mm宽度w/mm长度l/mm中心距r/mm
    铝(刻蚀)301021210
    铝(镀膜)20 + 10 (PI)##1210
    铝(标准)20##1210
    注: PI表示聚酰亚胺有机膜, #表示无刻蚀结构.
    下载: 导出CSV
    Baidu
  • [1]

    Jones B, Deeney C, McKenney J L, Garasi C J, Mehlhorn T A, Robinson A C, Wunsch S E, Bland S N, Lebedev S V, Chittenden J P, Bott S C, Ampleford D J, Palmer J B A, Rapley J, Hall G N, Oliver B V 2005 Phys. Rev. Lett. 95 225001Google Scholar

    [2]

    Hall G N 2007 Ph. D. Dissertation (London: Science of the University of London)

    [3]

    Hall G N, Chittenden J P, Bland S N, Lebedev S V, Bott S C, Jennings C, Palmer J B A, Suzuki-Vidal F 2008 Phys. Rev. Lett. 100 065003Google Scholar

    [4]

    盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜 2014 63 205203Google Scholar

    Sheng L, Li Y, Wu J, Yuan Y, Zhao J Z, Zhang M, Peng B D, Hei D W 2014 Acta Phys. Sin. 63 205203Google Scholar

    [5]

    盛亮, 李阳, 袁媛, 彭博栋, 李沫, 张美, 赵吉祯, 魏福利, 王亮平, 黑东炜, 邱爱慈 2014 63 055201Google Scholar

    Sheng L, Li Y, Yuan Y, Peng B D, Li M, Zhang M, Zhao J Z, Wei F L, Wang L P, Hei D W, Qiu A C 2014 Acta Phys. Sin. 63 055201Google Scholar

    [6]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar

    [7]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003Google Scholar

    [8]

    Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Peterson K J, Vesey R A, Nakhleh C, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2010 Phys. Rev. Lett. 105 185001Google Scholar

    [9]

    Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Jennings C A, Chittenden J P, Velikovich A L, Peterson K J, Vesey R A, Nakhleh C, Waisman E M, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2011 Phys. Plasmas 18 056301Google Scholar

    [10]

    Awe T J, Jennings C A, McBride R D, Cuneo M E, Lamppa D C, Martin M R, Rovang D C, Sinars D B, Slutz S A, Owen A C, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, Jones M C, McKenney J L, Robertson G K, Rochau G A, Savage M E, Schroen D G, Stygar W A 2014 Phys. Plasmas 21 056303Google Scholar

    [11]

    Awe T J, Peterson K J, Yu E P, McBride R D, Sinars D B, Gomez M R, Jennings C A, Martin M R, Rosenthal S E, Schroen D G, Sefkow A B, Slutz S A, Tomlinson K, Vesey R A 2016 Phys. Rev. Lett. 116 065001Google Scholar

    [12]

    Kantsyrev V L, Chuvatin A S, Safronova A S, Rudakov L I, Esaulov A A, Velikovich A L, Shrestha I, Astanovitsky A, Osborne G C, Shlyaptseva V V, Weller M E, Keim S, Stafford A, Cooper M 2014 Phys. Plasmas 21 031204Google Scholar

    [13]

    Lau Y Y, Zier J C, Rittersdorf I M, Weis M R, Gilgenbach R M 2011 Phys. Rev. E 83 066405Google Scholar

    [14]

    Zier J C, Gilgenbach R M, Chalenski D A, Lau Y Y, French D M, Gomez M R, Patel S G, Rittersdorf I M, Steiner A M, Weis M, Zhang P, Mazarakis M, Cuneo M E, Lopez M 2012 Phys. Plasmas 19 032701Google Scholar

    [15]

    Shelkovenko T A, Pikuz S A, Tilikin I N, Romanova V M, Mishin S N, Atoyan L, Hammer D A 2018 IEEE Trans. Plasma Sci. 46 3741Google Scholar

    [16]

    Shelkovenko T A, Pikuz S A, Tilikin I N, Mingaleev A R, Atoyan L, Hammer D A 2018 Plasma Phys. Rep. 44 236Google Scholar

    [17]

    Shelkovenko T A, Pikuz S A, Hammer D A 2016 Plasma Phy. Rep. 42 226Google Scholar

    [18]

    Rousskikh A G, Zhigalin A S, Oreshkin V I, Baksht R B 2020 Phys. Plasmas 27 033505Google Scholar

    [19]

    Clayson T, Lebedev S V, Suzuki-Vidal F, Burdiak G C, Halliday J W D, Hare J D, Ma J, Suttle L G, Tubman E R 2018 IEEE Trans. Plasma Sci. 46 3734Google Scholar

    [20]

    Hu Min, Kusse B R 2005 Phys. Plasmas 12 102701Google Scholar

    [21]

    Bland S N, Lebedev S V, Chittenden J P, Ampleford D J, Tang G 2004 Phys. Plasmas 11 4911Google Scholar

    [22]

    Swadling G F, Lebedev S V, Hall G N, Patankar S, Stewart N H, Smith R A, Harvey-Thompson A J, Burdiak G C, de Grouchy P, Skidmore J, Suttle L, Suzuki-Vidal F, Bland S N, Kwek K H, Pickworth L, Bennett M, Hare J D, Rozmus W, Yuan J 2014 Rev. Sci. Instrum. 85 11E502Google Scholar

    [23]

    Peterson K J, Awe T J, Yu E P, Sinars D B, Field E S, Cuneo M E, Herrmann M C, Savage M, Schroen D, Tomlinson K, Nakhleh C 2014 Phys. Rev. Lett. 112 135002Google Scholar

    [24]

    Oreshkin V I 2008 Phys. Plasmas 15 092103Google Scholar

  • [1] 刘永棠, 盛亮, 李阳, 张金海, 欧阳晓平. 反场构型平面薄膜电爆炸等离子体电流通道.  , 2022, 71(3): 035205. doi: 10.7498/aps.71.20211495
    [2] 刘永棠, 盛亮, 李阳, 张金海, 欧阳晓平. 反场构型平面薄膜电爆炸等离子体电流通道研究.  , 2021, (): . doi: 10.7498/aps.70.20211495
    [3] 段亮, 刘冲, 赵立臣, 杨战营. 基本非线性波与调制不稳定性的精确对应.  , 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [4] 董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎. 不同磁场构型下Richtmyer-Meshkov不稳定性的数值研究及动态模态分解.  , 2019, 68(16): 165201. doi: 10.7498/aps.68.20190410
    [5] 裴世鑫, 徐辉, 孙婷婷, 李金花. 正三角型三芯光纤中等腰对称平面波的调制不稳定性分析.  , 2018, 67(5): 054203. doi: 10.7498/aps.67.20171650
    [6] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性.  , 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [7] 魏琪, 鄂文汲. 薄膜去湿不稳定性的热力学分析.  , 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [8] 贾维国, 周严勇, 韩永明, 包红梅, 扬盛际. 光子晶体光纤耦合器中的标量调制不稳定性.  , 2009, 58(9): 6323-6329. doi: 10.7498/aps.58.6323
    [9] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性.  , 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [10] 丁万山, 席 崚, 柳莲花. 基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究.  , 2008, 57(12): 7705-7711. doi: 10.7498/aps.57.7705
    [11] 戴小玉, 文双春, 项元江. 色散磁导率对异向介质中的调制不稳定性的影响.  , 2008, 57(1): 186-193. doi: 10.7498/aps.57.186
    [12] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 高斯变迹布拉格光纤光栅中的调制不稳定性.  , 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [13] 李齐良, 孙丽丽, 陈均朗, 李庆山, 唐向宏, 钱 胜, 林理彬. 周期色散管理波分复用系统中交叉相位调制边带不稳定性理论分析.  , 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [14] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 保偏光纤中相近频率传输区域的调制不稳定性.  , 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
    [15] 贾维国, 杨性愉. 强双折射光纤中任意偏振方向矢量调制不稳定性.  , 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
    [16] 李齐良, 朱海东, 李院民, 唐向宏, 林理彬. 集总式放大波分复用链路中交叉相位调制的边带不稳定性.  , 2005, 54(6): 2686-2693. doi: 10.7498/aps.54.2686
    [17] 张有霆, 陈明. 垂直泵的结构对YIG单晶薄膜的第二级自旋波不稳定性临界场的影响.  , 1991, 40(6): 1017-1024. doi: 10.7498/aps.40.1017
    [18] 陆启韶. 有扩散不稳定性的四阶反应-扩散系统的空间周期结构.  , 1989, 38(12): 1901-1910. doi: 10.7498/aps.38.1901
    [19] 赵阳, 杨祥林. 非线性单模光纤中的调制不稳定性.  , 1989, 38(4): 541-547. doi: 10.7498/aps.38.541
    [20] 贺贤士. 等离子体中调制不稳定性和波包的坍缩过程.  , 1983, 32(5): 627-639. doi: 10.7498/aps.32.627
计量
  • 文章访问数:  4492
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2020-10-31
  • 上网日期:  2021-03-07
  • 刊出日期:  2021-03-20

/

返回文章
返回
Baidu
map