搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体团簇离子束两步能量修形法的平坦化效应

VasiliyPelenovich 曾晓梅 罗进宝 RakhimRakhimov 左文彬 张翔宇 田灿鑫 邹长伟 付德君 杨兵

引用本文:
Citation:

气体团簇离子束两步能量修形法的平坦化效应

VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵

Double-step gas cluster ion beam smoothing

Vasiliy Pelenovich, Zeng Xiao-Mei, Luo Jin-Bao, Rakhim Rakhimov, Zuo Wen-Bin, Zhang Xiang-Yu, Tian Can-Xin, Zou Chang-Wei, Fu De-Jun, Yang Bing
PDF
HTML
导出引用
  • 本文提出采用气体团簇离子束的两步能量修形法来改善4H-SiC(1000)晶片表面形貌. 先用15 keV的高能Ar团簇离子进行整体修形, 再用5 keV的低能团簇离子优化表面. 结果表明, 在相同的团簇离子剂量下, 与单一15 keV的高能团簇处理相比, 两步法修形后的表面具有更低的均方根粗糙度, 两者分别为1.05 nm和0.78 nm. 本文还以原子级平坦表面为研究对象, 揭示了载能团簇引起的半球形离子损伤(弧坑)与团簇能量的关系, 及两步能量修形法在弧坑修复中的优势. 在原子力显微镜表征的基础上, 引入了二维功率谱密度函数, 以直观全面地给出材料的表面形貌特征及其随波长(频率)的分布. 结果表明, 经任何能量的团簇离子轰击的表面, 在0.05—0.20 μm波长范围内, 团簇轰击都能有效地降低粗糙度, 而在0.02—0.05 μm范围内, 则出现了粗化效应, 这是由于形成了半球形离子损伤, 但第二步更低能量的团簇离子处理可以削弱这种粗化效应.
    In this study we use the double step gas cluster ion beam treatment to improve smoothing process of mechanically polished 4H-SiC (1000) wafers and compare it with conventional single-step smoothing. The first step is a higher energy treatment with 15 keV Ar cluster ions, and the second step is a lower 5 keV treatment. Single-step treatments are performed at 15 and 5 keV. It is shown that single-step 15 keV smoothing as compared with lower 5 keV one is very effective for removing the initial surface morphological feature (scratches), however, cluster ions impacting on the surface can create larger craters, resulting in roughness Rq of 1.05 nm. Whereas, 5 keV treatment at a selected fluence cannot remove initial scratches, which requires using higher fluences, i.e. such smoothing becomes time consuming. On the other hand, crater morphology with such a treatment is less developed, hence, the roughness slightly decreases to 0.9 nm. Using the double-step treatment, one can obtain the surface with lower Rq roughness of 0.78 nm as compared with single-step treatment, at the same total cluster ion fluence. Therefore, the double-step treatment combines the advantages of the effective smoothing of scratches at high energy and smaller crater morphology at low energy. To evaluate the contribution of the cluster morphology introduced by the accelerated clusters into the total roughness, the cluster ion beam treatment of an atomically smooth 4H-SiC (1000) surface is also carried out. It is shown that the crater diameter increases in a range of 15–30 nm with the cluster energy increasing. More detailed analysis of the smoothing process is carried out by using two-dimensional isotropic PSD function. It is shown that the cluster treatment of mechanically polished 4H-SiC wafers effectively reduces the roughness in a wavelength range of 0.05–0.20 μm and the efficiency of smoothing is higher at higher cluster energy. In a range of 0.02–0.05 μm, a roughening effect is observed, which is due to the formation of craters. This roughening effect can be effectively reduced by the subsequent lower energy step treatment, which can be shown by the PSD function analysis of the smooth SiC surface treated initially by cluster ion beam.
      通信作者: 曾晓梅, 1714399588@qq.com
    • 基金项目: 国家自然科学基金(批准号: 11875210, U1832127)和广东省自然科学基金(批准号: 2018A050506082, 2020A1515011531, 2020A1515011451)资助的课题
      Corresponding author: Zeng Xiao-Mei, 1714399588@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875210, U1832127) and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2018A050506082, 2020A1515011531, 2020A1515011451)
    [1]

    Yamada I, Matsuo J, Toyoda N, Kirkpatrick A 2001 Mater. Sci. Eng., R 34 231Google Scholar

    [2]

    Toyoda N, Ogawa A 2017 J. Phys. D: Appl. Phys. 50 184003Google Scholar

    [3]

    Korobeishchikov N G, Nikolaev I V, Roenko M A 2019 Nucl. Instrum. Methods B 438 1Google Scholar

    [4]

    Suzuki K, Kusakari M, Fujii M, Seki T, Aoki T, Matsuo J 2016 Surf. Interface Anal. 48 1119Google Scholar

    [5]

    Toyoda N, Tilakaratne B, Saleem I, Chu W K 2019 Appl. Phys. Rev. 6 020901Google Scholar

    [6]

    Ieshkin A, Kireev D, Ozerova K, Senatulin B 2020 Mater. Lett. 272 127829Google Scholar

    [7]

    Prasalovich S, Popok V, Persson P, Campbell E E B 2005 Eur. J. Phys. D 36 79Google Scholar

    [8]

    Gspann J 1995 Sens. Actuators A 51 37Google Scholar

    [9]

    Takeuchi D, Seki T, Aoki T, Matsuo J, Yamada I 1998 Mater. Chem. Phys. 54 76Google Scholar

    [10]

    Matsuo J, Seki T, Yamada I 2003 Nucl. Instrum. Methods B 206 838Google Scholar

    [11]

    Houzumi S, Takeshima K, Mochiji K, Toyoda N, Yamada I 2008 Electron. Commun. Jpn. 91 312

    [12]

    Greer J A, Fenner D B, Hautala J, Allen L P, DiFilippo V, Toyoda N, Yamada I, Matsuo J, Minamid E, Katsumata H 2000 Surf. Coat. Technol. 133-134 273Google Scholar

    [13]

    Isogai H, Toyoda E, Senda T, Izunome K, Kashima K, Toyoda N, Yamada I 2007 Nucl. Instrum. Methods B 257 683Google Scholar

    [14]

    Seki T, Matsuo J 2007 Surf. Coat. Technol. 201 8646Google Scholar

    [15]

    Toyoda N, Fujimoto A, Yamada I 2013 Jpn. J. Appl. Phys. 52 06GF01Google Scholar

    [16]

    Matsuo J, Toyoda N, Akizuki M, Yamada I 1997 Nucl. Instrum. Methods B 121 459Google Scholar

    [17]

    曾晓梅, Vasiliy Pelenovich, Rakhim Rakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君 2020 69 093601Google Scholar

    Zeng X M, Pelenovich V, Rakhimov R, Zuo W B, Xing B, Luo J B, Zhang X Y, Fu D J 2020 Acta Phys. Sin. 69 093601Google Scholar

    [18]

    Zeng X M, Pelenovich V, Wang Z S, Zuo W B, Belykh S, Tolstogouzov A, Fu D J, Xiao X H 2019 Beilstein J. Nanotechnol. 10 135Google Scholar

    [19]

    Pelenovich V O, Zeng X M, Ieshkin A E, Chernysh V S, Tolstogouzov A B, Yang B, Fu D J 2019 J. Surf. Invest. 13 344Google Scholar

    [20]

    Zeng X M, Pelenovich V, Liu C S, Fu D J 2017 Chin. Phys. C 41 087003Google Scholar

  • 图 1  4H-SiC(1000)经不同能量的Ar团簇垂直辐照后的AFM表面形貌图 (a) 15 keV; (b) 15 keV (更高倍率); (c) 图(b)中弧坑的截面轮廓图; (d) 5 keV; (e) 两步法, 15, 5 keV

    Fig. 1.  AFM images of 4H-SiC(1000) surface after Ar cluster bombardment at different energies: (a) 15 keV; (b) 15 keV at higher magnification; (c) cross section of a crater from Fig. (b); (d) 5 keV; (e) 15 keV and subsequent 5 keV.

    图 2  4H-SiC(1000)经不同能量的团簇轰击后, AFM图像对应的PSD曲线

    Fig. 2.  PSD functions of 4H-SiC (1000) surface after Ar cluster bombardment at different energies.

    图 3  4H-SiC(1000)经不同能量的Ar团簇垂直辐照后的AFM表面形貌图 (a) 原始形貌; (b) 15 keV; (c) 5 keV; (d) 15–5 keV两步能量

    Fig. 3.  AFM images of mechanically polished 4H-SiC (1000) surface before and after Ar cluster bombardment with different energy: (a) Initial surface; (b) 15 keV; (c) 5 keV; (d) 15 and subsequent 5 keV.

    图 4  4H-SiC(1000)经不同能量的团簇轰击后, AFM图像对应的PSD曲线插图表示短波区域, 箭头表示粗糙度随团簇能量的增加而变化

    Fig. 4.  PSD functions of 4H-SiC (1000) surface after Ar cluster bombardment at different energies. The inset represents short wavelength region. The arrow represent change of the roughness with increasing cluster energy.

    表 1  具有原子级平坦表面4H-SiC的团簇辐照参数(团簇能量、离子剂量、辐照时间)和辐照结果(均方根表面粗糙度Rq)

    Table 1.  The smoothing parameters (cluster energy, ion flux, and treatment time) and root mean square roughness Rq. The samples have atomically smooth initial surface.

    团簇能
    量/keV
    离子剂量/(1016 ions·cm–2)辐照时
    间/min
    均方根粗
    糙度/nm
    0000.15
    153200.99
    53400.61
    15–51.5+1.510+200.62
    下载: 导出CSV

    表 2  4H-SiC(1000)样品(含有机械损伤)的平坦化参数(团簇能量、离子剂量、平坦化时间)和平坦化结果(均方根表面粗糙度Rq)

    Table 2.  The smoothing parameters (cluster energy, ion flux, and treatment time) and root mean square roughness Rq. The samples have mechanically polished (scratched) initial surface.

    团簇能
    量/keV
    离子剂量/(1016 ions·cm–2)抛光时
    间/min
    均方根粗
    糙度/nm
    0001.35
    153201.05
    53400.90
    15–51.5+1.510+200.78
    下载: 导出CSV
    Baidu
  • [1]

    Yamada I, Matsuo J, Toyoda N, Kirkpatrick A 2001 Mater. Sci. Eng., R 34 231Google Scholar

    [2]

    Toyoda N, Ogawa A 2017 J. Phys. D: Appl. Phys. 50 184003Google Scholar

    [3]

    Korobeishchikov N G, Nikolaev I V, Roenko M A 2019 Nucl. Instrum. Methods B 438 1Google Scholar

    [4]

    Suzuki K, Kusakari M, Fujii M, Seki T, Aoki T, Matsuo J 2016 Surf. Interface Anal. 48 1119Google Scholar

    [5]

    Toyoda N, Tilakaratne B, Saleem I, Chu W K 2019 Appl. Phys. Rev. 6 020901Google Scholar

    [6]

    Ieshkin A, Kireev D, Ozerova K, Senatulin B 2020 Mater. Lett. 272 127829Google Scholar

    [7]

    Prasalovich S, Popok V, Persson P, Campbell E E B 2005 Eur. J. Phys. D 36 79Google Scholar

    [8]

    Gspann J 1995 Sens. Actuators A 51 37Google Scholar

    [9]

    Takeuchi D, Seki T, Aoki T, Matsuo J, Yamada I 1998 Mater. Chem. Phys. 54 76Google Scholar

    [10]

    Matsuo J, Seki T, Yamada I 2003 Nucl. Instrum. Methods B 206 838Google Scholar

    [11]

    Houzumi S, Takeshima K, Mochiji K, Toyoda N, Yamada I 2008 Electron. Commun. Jpn. 91 312

    [12]

    Greer J A, Fenner D B, Hautala J, Allen L P, DiFilippo V, Toyoda N, Yamada I, Matsuo J, Minamid E, Katsumata H 2000 Surf. Coat. Technol. 133-134 273Google Scholar

    [13]

    Isogai H, Toyoda E, Senda T, Izunome K, Kashima K, Toyoda N, Yamada I 2007 Nucl. Instrum. Methods B 257 683Google Scholar

    [14]

    Seki T, Matsuo J 2007 Surf. Coat. Technol. 201 8646Google Scholar

    [15]

    Toyoda N, Fujimoto A, Yamada I 2013 Jpn. J. Appl. Phys. 52 06GF01Google Scholar

    [16]

    Matsuo J, Toyoda N, Akizuki M, Yamada I 1997 Nucl. Instrum. Methods B 121 459Google Scholar

    [17]

    曾晓梅, Vasiliy Pelenovich, Rakhim Rakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君 2020 69 093601Google Scholar

    Zeng X M, Pelenovich V, Rakhimov R, Zuo W B, Xing B, Luo J B, Zhang X Y, Fu D J 2020 Acta Phys. Sin. 69 093601Google Scholar

    [18]

    Zeng X M, Pelenovich V, Wang Z S, Zuo W B, Belykh S, Tolstogouzov A, Fu D J, Xiao X H 2019 Beilstein J. Nanotechnol. 10 135Google Scholar

    [19]

    Pelenovich V O, Zeng X M, Ieshkin A E, Chernysh V S, Tolstogouzov A B, Yang B, Fu D J 2019 J. Surf. Invest. 13 344Google Scholar

    [20]

    Zeng X M, Pelenovich V, Liu C S, Fu D J 2017 Chin. Phys. C 41 087003Google Scholar

  • [1] 罗进宝, VasiliyPelenovich, 曾晓梅, 郝中华, 张翔宇, 左文彬, 付德君. 离子剂量比在气体团簇多级能量平坦化模式中的作用.  , 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [2] 曾晓梅, VasiliyPelenovich, RakhimRakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君. 气体团簇离子束装置的设计及其在表面平坦化、自组装纳米结构中的应用.  , 2020, 69(9): 093601. doi: 10.7498/aps.69.20191990
    [3] 王建国, 杨松林, 叶永红. 样品表面银膜的粗糙度对钛酸钡微球成像性能的影响.  , 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [4] 张冉, 常青, 李桦. 气体-表面相互作用的分子动力学模拟研究.  , 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
    [5] 程广贵, 张忠强, 丁建宁, 袁宁一, 许多. 石墨表面熔融硅的润湿行为研究.  , 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [6] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究.  , 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [7] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响.  , 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [8] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究.  , 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [9] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模.  , 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [10] 李资政, 杨海贵, 王笑夷, 高劲松. 具有大面积均匀性、高质量的大尺寸中阶梯光栅铝膜的研究.  , 2014, 63(15): 157801. doi: 10.7498/aps.63.157801
    [11] 马靖杰, 夏辉, 唐刚. 含关联噪声的空间分数阶随机生长方程的动力学标度行为研究.  , 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [12] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用.  , 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [13] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响.  , 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [14] 黄晓玉, 程新路, 徐嘉靖, 吴卫东. Be原子在Be基底上的沉积过程研究.  , 2012, 61(9): 096801. doi: 10.7498/aps.61.096801
    [15] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究.  , 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [16] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响.  , 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [17] 谷锦华, 丁艳丽, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 椭圆偏振技术研究VHF-PECVD高速沉积微晶硅薄膜的异常标度行为.  , 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [18] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响.  , 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [19] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究.  , 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [20] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性.  , 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
计量
  • 文章访问数:  6901
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2020-11-02
  • 上网日期:  2021-02-21
  • 刊出日期:  2021-03-05

/

返回文章
返回
Baidu
map