搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于温度效应的无限长压电圆杆纵波分析

陈琼 薛春霞 王勋

引用本文:
Citation:

基于温度效应的无限长压电圆杆纵波分析

陈琼, 薛春霞, 王勋

Longitudinal wave analysis of infinite length piezoelectric circular rod based on temperature effect

Chen Qiong, Xue Chun-Xia, Wang Xun
PDF
HTML
导出引用
  • 利用有限变形理论, 以无限长压电圆杆为研究对象, 考虑了在横向惯性、等效泊松比效应以及在热电弹耦合共同作用下, 基于Hamilton原理, 并引入Euler方程推导出压电圆杆的纵向波动方程. 采用Jacobi椭圆函数展开法, 求解压电圆杆的波动方程和对应的解. 最后, 通过Matlab软件得到不同波速比下的色散曲线, 以及温度场对压电圆杆的波形、波幅和波数的影响曲线. 数值分析结果表明: 随着温度的升高, 波速逐渐降低, 温度场的改变可影响和控制孤立波的传播特性.
    Piezoelectric elements have been commonly used because of their wide applications in sensors, transducers, and some micro intelligent structures. However, in the fields of aviation, aerospace, and automation, some relevant equipment works in a harsh environment and is susceptible to the temperature change, thereby leading its performances to be greatly affected. Therefore, the problem of nonlinear wave relating to piezoelectric circular rods in different temperature fields is studied by modeling and numerical analysis. Firstly, based on the theory of finite deformation, we take infinite piezoelectric circular rod as a research object and consider the effects of transverse inertia and equivalent Poisson's ratio under the thermoelectric coupling action. Using the Hamilton principle and introducing the Euler equation, the longitudinal wave equation of piezoelectric circular rod is obtained. Secondly, Jacobi elliptic cosine function and Jacobi elliptic sine function expansion method are used to solve the wave equation of the piezoelectric circular rod, and the solitary wave solution and the exact periodic solution of the wave equation are obtained. It is found that the periodic solution can be reduced into a solitary wave solution under certain conditions, and it is proved theoretically that there may be solitary wave stably propagating in a piezoelectric circular rod. Finally, the dispersion curves of different wave velocity ratios and the curves about influences of temperature field on the waveform, amplitude and wave number of the piezoelectric rod are obtained by Matlab. The numerical results show that the wave velocity decreases with the increase of temperature when the wave velocity ratio is constant. Given the temperature is constant, it can be found that with the increase of the ratio, the amplitude of solitary wave gradually increases while the wavelength gradually decreases. In addition, the images obtained show that although temperature change can cause the characteristics of solitary waves to change, the solitary waves are always symmetrical bell shaped waves in the propagation process, reflecting the stability characteristics under the combined action of nonlinear and dispersion effects. Therefore, the variation of temperature field can influence and control some propagation characteristics of solitary waves. Moreover, the wave theory has been widely used in the nondestructive testing of structures and the improving of information transmission quality due to its special stability.
      通信作者: 薛春霞, xuechunxia@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11202190)资助的课题
      Corresponding author: Xue Chun-Xia, xuechunxia@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202190)
    [1]

    Janshoff A, Steinem C, Galla H J 2000 Angew. Chem. Int. Ed. 39 4004Google Scholar

    [2]

    刘延柱, 薛纭, 陈立群 2004 53 2424Google Scholar

    Liu Y Z, Xue Y, Chen L Q 2004 Acta Phys. Sin. 53 2424Google Scholar

    [3]

    He T H, Tian X G, Shen Y P 2002 Int. J. Eng. Sci. 40 1081Google Scholar

    [4]

    范恩贵 2000 49 1409Google Scholar

    Fan E G 2000 Acta Phys. Sin. 49 1409Google Scholar

    [5]

    李向正, 张卫国, 原三领 2010 59 744Google Scholar

    Li X Z, Zhang W G, Yuan S L 2010 Acta Phys. Sin. 59 744Google Scholar

    [6]

    冯依虎 2019 应用力学与数学 40 1Google Scholar

    Feng Y H 2019 Appl. Math. Mech. 40 1Google Scholar

    [7]

    Guo J G, Zhou L J, Zhang S Y 2005 Appl. Math. Mech. 26 667Google Scholar

    [8]

    李敏, 王博婷, 许韬, 水涓涓 2020 69 010502Google Scholar

    Li M, Wang B T, Xu T, Shui J J 2020 Acta Phys. Sin. 69 010502Google Scholar

    [9]

    李志斌, 潘素起 2004 50 402Google Scholar

    Li Z B, Pan S Q 2004 Acta Phys. Sin. 50 402Google Scholar

    [10]

    Xia T C, Li B, Zhang H Q 2001 Appl. Math. E-Notes 1 139

    [11]

    钱存, 王亮亮, 张解放 2011 60 064214Google Scholar

    Qian C, Wang L L, Zhang J F 2011 Acta Phys. Sin. 60 064214Google Scholar

    [12]

    刘式达, 傅遵涛, 刘式适, 赵强 2002 51 718Google Scholar

    Liu S D, Fu Z T, Liu S K, Zhao Q 2002 Acta Phys. Sin. 51 718Google Scholar

    [13]

    Zhang S Y, Zhang W 1987 Acta Mech. Sin. 3 64Google Scholar

    [14]

    刘志芳, 张善元 2007 固体力学学报 28 55Google Scholar

    Liu Z F, Zhang S Y 2007 Acta Mech. Solid. Sin. 28 55Google Scholar

    [15]

    刘志芳, 张善元 2006 55 628Google Scholar

    Liu Z F, Zhang S Y 2006 Acta Phys. Sin. 55 628Google Scholar

    [16]

    Liu Z F, Zhang S Y 2006 Appl. Math. Mech. 27 1431Google Scholar

    [17]

    邓庆田, 罗松南, 彭亮 2009 应用力学学报 26 519Google Scholar

    Deng Q T, Luo S N, Peng L 2009 Chin. J. Appl. Mech. 26 519Google Scholar

    [18]

    Seadawy A R, Manafian J 2018 Results Phys. 8 1158Google Scholar

    [19]

    Baskonus H M, Bulut H, Atangana A 2016 Smart Mater. Struct. 25 035022Google Scholar

    [20]

    Bulut H, Sulaiman T A, Baskonus H M 2018 Opt. Quantum. Electron. 50 2Google Scholar

    [21]

    Wang Q 2001 Int. J. Solids. Struct. 38 8207Google Scholar

    [22]

    Xue C X, Pan E 2013 Int. J. Eng. Sci. 62 48Google Scholar

    [23]

    Samsonov A M 2001 Strain Solitons in Solids and How to Construct Them (New York: Chapman and Hall/CRC) p111

    [24]

    Toffoli T, Fernandez L, Monbaliu J, Benoit M, Gagnaire-Renou E, Lefèvre J M, Cavaleri L, Proment D, Pakozdi C, Stansberg C T, Waseda T, Onorato M 2013 Phys. Fluids 25 091701Google Scholar

    [25]

    Ansari R, Oskouie F M, Gholami R, Sadeghi F 2016 Compos. Part B-Eng. 89 316Google Scholar

    [26]

    Ootao Y, Tanigawa Y 2000 Int. J. Eng. Sci. 38 47Google Scholar

    [27]

    Shiv P J 1992 Smart Mater. Struct. 1 80Google Scholar

    [28]

    Xue C X, Pan E, Zhang S Y 2011 Smart Mater. Struct. 20 105010Google Scholar

    [29]

    常瑞鼎 2014 硕士学位论文 (湘潭: 湘潭大学)

    Chang R D 2014 M. S. Thesis (Hunan: Xiangtan University) (in Chinese)

    [30]

    贾菲B 著 (林声和 译) 1976 压电陶瓷 (北京: 科学出版社)第125−145页

    Jaffe B (translated by Lin S H) 1976 Piezoelectric Ceramics (Beijing: Science Press) pp125−145 (in Chinese)

  • 图 1  压电圆杆示意图

    Fig. 1.  Schematic diagram of piezoelectric rod.

    图 2  不同波速比c/c0下孤波波速u与变量ξ的关系

    Fig. 2.  Relationship between solitary wave u and variable ξ under different wave velocity ratio c/c0 values.

    图 3  波速比c/c0 = 1.3时三种不同温度下的波形

    Fig. 3.  Three waveforms at different temperatures when the velocity ratio of c/c0 = 1.3.

    图 4  Θ = 50 ℃时不同波速比c/c0下的波形

    Fig. 4.  Waveforms under different wave velocity ratio c/c0 values when Θ = 50 ℃.

    图 5  当波速比c/c0 = 1.3, Θ = 50 ℃时三维曲面图

    Fig. 5.  Three-dimensional surface figure when the wave ratio c/c0 = 1.3, Θ = 50 ℃.

    图 6  压电圆杆的孤波特性

    Fig. 6.  Solitariness of piezoelectric rod.

    图 7  三种不同温度下波速c和波数k的关系图

    Fig. 7.  Graph of wave velocity c and wave number k at three different temperatures.

    表 1  钛酸钡材料参数[29]

    Table 1.  Material parameters of BaTiO3[29].

    参数参数值参数参数值
    c11/(N·m–2)166 × 109 e15/(C·m–2)11.6
    c12/(N·m–2)77 × 109 ε11/(C2·N–2·m–1)11.2 × 10–9
    c13/(N·m–2)78 × 109ε33/(C2·N-2·m–1)12.9 × 10–9
    c33/(N·m–2)162 × 109d1/(C·km–2)–5.4831 × 10–6
    c44/(N·m–2)43 × 109d3/(C·km–2)–5.4831 × 10–6
    e31/(C·m–2)–4.4α1 = 0.5α310 × 10–6
    e33/(C·m–2)18.6β1/m20.5278 × 10–4
    β2/m22.112 × 10–4β3/m24.7502 × 10–4
    α/(N·m·kg–1)3.5561 × 107veff0.2906
    ρ/(kg·m-3)5.8 × 103
    下载: 导出CSV

    表 2  不同温度下波速比较

    Table 2.  Comparison of the wave velocities at different temperature.

    Θ/℃c0/(103 m·s–1)
    105.4482
    505.4367
    905.4251
    下载: 导出CSV

    表 3  R = 0.05 m时不同波速比下参数比较

    Table 3.  Comparison of parameters under different wave velocity ratios when R = 0.05 m.

    c/c0A/mΛ/mk
    1.1 0.2567 0.5429 11.5675
    1.2 0.5378 0.4092 15.3470
    1.3 0.8434 0.3540 17.740
    下载: 导出CSV

    表 4  波速比c/c0 = 1.1时不同半径下参数比较

    Table 4.  Comparison of parameters under different radii when c/c0 = 1.1.

    R/mΛ/mk
    0.0250.270523.2162
    0.0500.542911.5675
    0.0750.81167.7375
    下载: 导出CSV
    Baidu
  • [1]

    Janshoff A, Steinem C, Galla H J 2000 Angew. Chem. Int. Ed. 39 4004Google Scholar

    [2]

    刘延柱, 薛纭, 陈立群 2004 53 2424Google Scholar

    Liu Y Z, Xue Y, Chen L Q 2004 Acta Phys. Sin. 53 2424Google Scholar

    [3]

    He T H, Tian X G, Shen Y P 2002 Int. J. Eng. Sci. 40 1081Google Scholar

    [4]

    范恩贵 2000 49 1409Google Scholar

    Fan E G 2000 Acta Phys. Sin. 49 1409Google Scholar

    [5]

    李向正, 张卫国, 原三领 2010 59 744Google Scholar

    Li X Z, Zhang W G, Yuan S L 2010 Acta Phys. Sin. 59 744Google Scholar

    [6]

    冯依虎 2019 应用力学与数学 40 1Google Scholar

    Feng Y H 2019 Appl. Math. Mech. 40 1Google Scholar

    [7]

    Guo J G, Zhou L J, Zhang S Y 2005 Appl. Math. Mech. 26 667Google Scholar

    [8]

    李敏, 王博婷, 许韬, 水涓涓 2020 69 010502Google Scholar

    Li M, Wang B T, Xu T, Shui J J 2020 Acta Phys. Sin. 69 010502Google Scholar

    [9]

    李志斌, 潘素起 2004 50 402Google Scholar

    Li Z B, Pan S Q 2004 Acta Phys. Sin. 50 402Google Scholar

    [10]

    Xia T C, Li B, Zhang H Q 2001 Appl. Math. E-Notes 1 139

    [11]

    钱存, 王亮亮, 张解放 2011 60 064214Google Scholar

    Qian C, Wang L L, Zhang J F 2011 Acta Phys. Sin. 60 064214Google Scholar

    [12]

    刘式达, 傅遵涛, 刘式适, 赵强 2002 51 718Google Scholar

    Liu S D, Fu Z T, Liu S K, Zhao Q 2002 Acta Phys. Sin. 51 718Google Scholar

    [13]

    Zhang S Y, Zhang W 1987 Acta Mech. Sin. 3 64Google Scholar

    [14]

    刘志芳, 张善元 2007 固体力学学报 28 55Google Scholar

    Liu Z F, Zhang S Y 2007 Acta Mech. Solid. Sin. 28 55Google Scholar

    [15]

    刘志芳, 张善元 2006 55 628Google Scholar

    Liu Z F, Zhang S Y 2006 Acta Phys. Sin. 55 628Google Scholar

    [16]

    Liu Z F, Zhang S Y 2006 Appl. Math. Mech. 27 1431Google Scholar

    [17]

    邓庆田, 罗松南, 彭亮 2009 应用力学学报 26 519Google Scholar

    Deng Q T, Luo S N, Peng L 2009 Chin. J. Appl. Mech. 26 519Google Scholar

    [18]

    Seadawy A R, Manafian J 2018 Results Phys. 8 1158Google Scholar

    [19]

    Baskonus H M, Bulut H, Atangana A 2016 Smart Mater. Struct. 25 035022Google Scholar

    [20]

    Bulut H, Sulaiman T A, Baskonus H M 2018 Opt. Quantum. Electron. 50 2Google Scholar

    [21]

    Wang Q 2001 Int. J. Solids. Struct. 38 8207Google Scholar

    [22]

    Xue C X, Pan E 2013 Int. J. Eng. Sci. 62 48Google Scholar

    [23]

    Samsonov A M 2001 Strain Solitons in Solids and How to Construct Them (New York: Chapman and Hall/CRC) p111

    [24]

    Toffoli T, Fernandez L, Monbaliu J, Benoit M, Gagnaire-Renou E, Lefèvre J M, Cavaleri L, Proment D, Pakozdi C, Stansberg C T, Waseda T, Onorato M 2013 Phys. Fluids 25 091701Google Scholar

    [25]

    Ansari R, Oskouie F M, Gholami R, Sadeghi F 2016 Compos. Part B-Eng. 89 316Google Scholar

    [26]

    Ootao Y, Tanigawa Y 2000 Int. J. Eng. Sci. 38 47Google Scholar

    [27]

    Shiv P J 1992 Smart Mater. Struct. 1 80Google Scholar

    [28]

    Xue C X, Pan E, Zhang S Y 2011 Smart Mater. Struct. 20 105010Google Scholar

    [29]

    常瑞鼎 2014 硕士学位论文 (湘潭: 湘潭大学)

    Chang R D 2014 M. S. Thesis (Hunan: Xiangtan University) (in Chinese)

    [30]

    贾菲B 著 (林声和 译) 1976 压电陶瓷 (北京: 科学出版社)第125−145页

    Jaffe B (translated by Lin S H) 1976 Piezoelectric Ceramics (Beijing: Science Press) pp125−145 (in Chinese)

  • [1] 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究.  , 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
    [2] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究.  , 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [3] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究.  , 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [4] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟.  , 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [5] 杨永锋, 冯海波, 陈虎, 仵敏娟. 柔性杆与凸轮斜碰撞特性分析.  , 2016, 65(24): 240502. doi: 10.7498/aps.65.240502
    [6] 胡雪兰, 罗阳, 赵若汐, 胡艳敏, 张艳峰, 宋庆功. NiAl中Ni空位对杂质C原子的多重俘获及温度效应的第一性原理研究.  , 2016, 65(20): 206101. doi: 10.7498/aps.65.206101
    [7] 汪维刚, 林万涛, 石兰芳, 莫嘉琪. 非线性扰动时滞长波系统孤波近似解.  , 2014, 63(11): 110204. doi: 10.7498/aps.63.110204
    [8] 许永红, 韩祥临, 石兰芳, 莫嘉琪. 薛定谔扰动耦合系统孤波的行波近似解法.  , 2014, 63(9): 090204. doi: 10.7498/aps.63.090204
    [9] 郭巧能, 曹义刚, 孙强, 刘忠侠, 贾瑜, 霍裕平. 温度对超薄铜膜疲劳性能影响的分子动力学模拟.  , 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [10] 欧阳成, 石兰芳, 林万涛, 莫嘉琪. (2+1)维扰动时滞破裂孤波方程行波解的摄动方法.  , 2013, 62(17): 170201. doi: 10.7498/aps.62.170201
    [11] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布.  , 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [12] 周先春, 林万涛, 林一骅, 莫嘉琪. 大气非均匀量子等离子体孤波解.  , 2012, 61(24): 240202. doi: 10.7498/aps.61.240202
    [13] 陈琼, 杨先清, 赵新印, 王振辉, 赵跃民. 周期型二元颗粒链中孤波传播的二体碰撞近似分析.  , 2012, 61(4): 044501. doi: 10.7498/aps.61.044501
    [14] 许永红, 姚静荪, 莫嘉琪. (3+1)维Burgers扰动系统孤波的解法.  , 2012, 61(2): 020202. doi: 10.7498/aps.61.020202
    [15] 宋柏, 吴晶, 过增元. 基于热质理论的Hamilton原理.  , 2010, 59(10): 7129-7134. doi: 10.7498/aps.59.7129
    [16] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应.  , 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [17] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法.  , 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [18] 段文山, 洪学仁. 弱相对论等离子体横向扰动下的离子声孤波.  , 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [19] 徐桂琼, 李志斌. 构造非线性发展方程孤波解的混合指数方法.  , 2002, 51(5): 946-950. doi: 10.7498/aps.51.946
    [20] 李志斌, 潘素起. 广义五阶KdV方程的孤波解与孤子解.  , 2001, 50(3): 402-405. doi: 10.7498/aps.50.402
计量
  • 文章访问数:  4882
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 修回日期:  2020-09-14
  • 上网日期:  2021-01-18
  • 刊出日期:  2021-02-05

/

返回文章
返回
Baidu
map