搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段高重频长脉冲高功率多注相对论速调管放大器的设计与实验研究

刘振帮 黄华 金晓 王腾钫 李士锋

引用本文:
Citation:

X波段高重频长脉冲高功率多注相对论速调管放大器的设计与实验研究

刘振帮, 黄华, 金晓, 王腾钫, 李士锋

Design and experiment of X-band high-repetition rate high-power multi-beam relativistic klystron amplifier

Liu Zhen-Bang, Huang Hua, Jin Xiao, Wang Teng-Fang, Li Shi-Feng
PDF
HTML
导出引用
  • 多注相对论速调管放大器向工程化和实用化方向发展, 需要进一步提高其工作重频和使用寿命. 针对高功率多注相对论速调管放大器在输出腔间隙电子束换能后, 会出现电子返流轰击输出腔表面, 以及输出腔间隙电场过高产生射频击穿导致输出腔表面出现烧蚀的问题, 本文分析了强流相对论电子束在器件中的返流过程, 在此基础上设计了四间隙扩展互作用提取结构以避免电子返流和降低间隙电场, 并提高器件工作寿命. 同时针对高工作频段高过模器件中常规水冷却通道会影响输出微波模式的问题, 设计了同轴TEM模-扇形TE10模-同轴TEM模-圆波导TM01模的模式变换结构, 模式转换效率大于99.9%, 避免了收集极水冷却通道对输出微波模式的影响, 以提高器件工作重频. 在重频45 Hz工作条件下, 实验实现X波段长脉冲GW级高功率微波稳定输出, 器件累计运行约10000次, 输出微波参数无明显下降.
    The relativistic klystron amplifier (RKA) is a very important kind of high power microwave device, which has the advantages of high power, high efficiency, stable output phase and amplitude. The development of multi-injection RKA toward engineering and practical application needs to further improve operating frequency and output power of klystron amplifier, while the RKA of conventional circular waveguide drift tubes is restricted by the physical factors such as geometric size, space charge force and high-voltage breakdown. The multi-beam RKA based on the technology of multiple electron beams can work at low voltage and guiding magnetic field, and can also possess high electron beam current and diversion coefficient. The physical limitation of conventional structure RKA is overcome, and the working frequency and the output power are improved. In the experiment, the X-band GW level power of microwave is obtained. The multi-beam RKA needs to further improve its working frequency and working life. In the experiment, the power conversion efficiency of multi-beam RKA is about 35%, and most of the remaining electron energy will accumulate on the collection pole at the end. If the heat dissipation of the collector is not designed appropriately, the collection will be seriously ablated when working at high heavy frequency. Thus a large quantity of plasma and secondary electrons are generated, which affects the stability of the device. To solve the problem of electron reflux bombarding the output cavity after electron beam exchanging energy in the gap of output cavity, the reflux process of relativistic electron beam in the device is analyzed in this paper. On this basis, a coaxial extraction structure with four-gap extension interaction is designed to avoid electron reflux and reduce the gap electric field, thus improving the working life of the device. At the same time, in order to solve the problem that the conventional water cooling channel can affect the output microwave mode in a high-frequency over-mode device, a mode transformation structure of coaxial TEM mode-fan-shaped TE10 mode-coaxial TEM mode-circular waveguide TM01 mode is designed. The mode conversion efficiency is greater than 99.9%, and the influence of collecting polar water cooling channel on the output microwave mode is avoided. The stable operation of multi-beam RKA in the X-band with a repetition rate of 45 Hz is realized experimentally, while the output power is over 1 GW and the microwave pulse width is over 100 ns. At present, the multi-beam RKA runs about 10000 times in total, and the output microwave parameters do not decrease significantly.
      通信作者: 刘振帮, liu9559@yeah.net
    • 基金项目: 高功率微波技术重点实验室基金(批准号: 6142605180203)资助的课题
      Corresponding author: Liu Zhen-Bang, liu9559@yeah.net
    • Funds: Project supported by the Science Foundation of the High Power Microwave Laboratory, China (Grant No. 6142605180203)
    [1]

    Jerrold S L, Bruce D H 1994 Appl. Phys. Lett. 65 2133Google Scholar

    [2]

    黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 67 088402Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402Google Scholar

    [3]

    Thomas H, Adam B, Rasheda B, Heinz B, Mark C, Edward E, Deepika G, Armand S, Brad S, Lou Z 2010 IEEE Trans. Plasma Sci. 38 1264Google Scholar

    [4]

    Ding Y G, Shen B, Cao J, Zhang Y Q, Ruan C J, Gu H H, Zhang D, Wang C Y, Cao M 2009 IEEE Trans. Electron Dev. 56 870Google Scholar

    [5]

    吴洋, 许州, 周霖, 李文君, 唐传祥 2012 61 224101Google Scholar

    Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar

    [6]

    Li R J, Ruan C J, Zhang H F 2018 Phys. Plasmas 25 033107Google Scholar

    [7]

    魏元璋, 李士锋, 王战亮, 黄华, 刘振帮, 何琥, 宫玉彬 2018 强激光与粒子束 30 063007Google Scholar

    Wei Y Z, Li S F, Wang Z L, Huang H, Liu Z B, He H, Gong Y B 2018 High Power Laser and Particle Beams 30 063007Google Scholar

    [8]

    张长青, 阮存军, 王树忠, 杨修东 2015 红外与毫米波学报 34 307Google Scholar

    Zhang C Q, Ruan C J, Wang S Z, Yang X D 2015 J. Infrared Millmeter Waves 34 307Google Scholar

    [9]

    Friedman M, Pasour J, Smithe D 1997 Appl. Phys. Lett. 71 3724Google Scholar

    [10]

    Edward B A, Andrew N D, Mikhail I F, Nikolay G K, Nikolay F K, Mikhail I P, Alexander V S, Edl S, Eugeny I S, Vladimir V Y 2002 IEEE Trans. Plasma Sci. 30 1041Google Scholar

    [11]

    Zhang W, Ju J C, Zhang J, Zhou Y X, Zhong H H 2019 Phys. Plasmas 26 053102Google Scholar

    [12]

    Qi Z M, Zhang J, Zhang Q, Zhong H H, Xu L R, Yang L 2016 IEEE Electron Device Lett. 37 782Google Scholar

    [13]

    刘振帮, 金晓, 黄华, 陈怀璧 2012 61 128401Google Scholar

    Liu Z B, Jin X, Huang H, Chen H B 2012 Acta Phys. Sin. 61 128401Google Scholar

    [14]

    刘振帮, 黄华, 金晓, 袁欢, 戈弋, 何琥, 雷禄容 2015 64 018401Google Scholar

    Liu Z B, Huang H, Jin X, Yuan H, Ge Y, He H, Lei L R 2015 Acta Phys. Sin. 64 018401Google Scholar

    [15]

    Liu Z B, Huang H, Jin X, Lei L R, Zhu L, Li L L, Li S F, Yan W K, He H 2016 Phys. Plasmas 23 093110Google Scholar

    [16]

    王淦平, 金晓, 黄华, 刘振帮 2017 66 044102Google Scholar

    Wang G P, Jin X, Huang H, Liu Z B 2017 Acta Phys. Sin. 66 044102Google Scholar

    [17]

    Carlsten B E, Faehl R J, Fazio M V, Haynes W B, Stringfield R M 1994 IEEE Trans. Plasma Sci. 22 719Google Scholar

    [18]

    彭国良, 梁玉钦 2016 强激光与粒子束 28 053003Google Scholar

    Peng G L, Liang Y Q 2016 High Power Laser and Particle Beams 28 053003Google Scholar

    [19]

    薛明, 丁耀根, 王勇 2018 真空电子技术 8 43Google Scholar

    Xue M, Ding Y G, Wang R 2018 Vaccum Electron. 8 43Google Scholar

    [20]

    戴宏毅, 肖亚斌, 王同权, 张树发 2001 湖南大学学报 28 6

    Dai H Y, Xiao Y B, Wang T Q, Zhang S F 2001 J. Hunan Univ. 28 6

  • 图 1  X波段多注RKA结构示意图

    Fig. 1.  Structure diagram of X band multi-beam RKA.

    图 2  强流电子束在同轴结构中传输

    Fig. 2.  Intense electron beam is transmitted in the coaxial structure.

    图 3  直流电子束在器件中传输时Ep/E0的变化

    Fig. 3.  Changes of Ep/E0 when the electron beam is transmitted in the device.

    图 4  输出微波与间隙电场分布 (a)输出微波波形; (b)输出腔电场分布

    Fig. 4.  Distribution of output microwave and gap electric field: (a) Output microwave waveform; (b) electric field distribution of the output cavity.

    图 5  改进设计前后电子束相空间图 (a)改进设计前; (b)改进设计后

    Fig. 5.  Electron beam phase space diagram: (a) Before the improved design; (b) improved design.

    图 6  改进设计前后电子束电流随轴向传输距离的变化 (a)改进设计前; (b)改进设计后

    Fig. 6.  Changes of electron beam current with axial transmission distance: (a) Before the improved design; (b) improved design.

    图 7  模式变换结构的电场分布 (a)纵向剖面; (b)横向剖面

    Fig. 7.  Electric field distribution of the mode transform structure: (a) Lengthwise section; (b) transverse section.

    图 8  模式变换结构的S参数曲线

    Fig. 8.  The S parameter curve of mode transformation structure.

    图 9  重频45 Hz电子束重叠波形

    Fig. 9.  Overlapping waveform of electron beam at 45 Hz.

    图 10  重频45 Hz微波序列与重叠波形 (a) 序列波形; (b) 重叠波形

    Fig. 10.  Microwave sequence and overlapped waveform at 45 Hz: (a) Sequence waveform; (b) overlapping waveform.

    Baidu
  • [1]

    Jerrold S L, Bruce D H 1994 Appl. Phys. Lett. 65 2133Google Scholar

    [2]

    黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 67 088402Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402Google Scholar

    [3]

    Thomas H, Adam B, Rasheda B, Heinz B, Mark C, Edward E, Deepika G, Armand S, Brad S, Lou Z 2010 IEEE Trans. Plasma Sci. 38 1264Google Scholar

    [4]

    Ding Y G, Shen B, Cao J, Zhang Y Q, Ruan C J, Gu H H, Zhang D, Wang C Y, Cao M 2009 IEEE Trans. Electron Dev. 56 870Google Scholar

    [5]

    吴洋, 许州, 周霖, 李文君, 唐传祥 2012 61 224101Google Scholar

    Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar

    [6]

    Li R J, Ruan C J, Zhang H F 2018 Phys. Plasmas 25 033107Google Scholar

    [7]

    魏元璋, 李士锋, 王战亮, 黄华, 刘振帮, 何琥, 宫玉彬 2018 强激光与粒子束 30 063007Google Scholar

    Wei Y Z, Li S F, Wang Z L, Huang H, Liu Z B, He H, Gong Y B 2018 High Power Laser and Particle Beams 30 063007Google Scholar

    [8]

    张长青, 阮存军, 王树忠, 杨修东 2015 红外与毫米波学报 34 307Google Scholar

    Zhang C Q, Ruan C J, Wang S Z, Yang X D 2015 J. Infrared Millmeter Waves 34 307Google Scholar

    [9]

    Friedman M, Pasour J, Smithe D 1997 Appl. Phys. Lett. 71 3724Google Scholar

    [10]

    Edward B A, Andrew N D, Mikhail I F, Nikolay G K, Nikolay F K, Mikhail I P, Alexander V S, Edl S, Eugeny I S, Vladimir V Y 2002 IEEE Trans. Plasma Sci. 30 1041Google Scholar

    [11]

    Zhang W, Ju J C, Zhang J, Zhou Y X, Zhong H H 2019 Phys. Plasmas 26 053102Google Scholar

    [12]

    Qi Z M, Zhang J, Zhang Q, Zhong H H, Xu L R, Yang L 2016 IEEE Electron Device Lett. 37 782Google Scholar

    [13]

    刘振帮, 金晓, 黄华, 陈怀璧 2012 61 128401Google Scholar

    Liu Z B, Jin X, Huang H, Chen H B 2012 Acta Phys. Sin. 61 128401Google Scholar

    [14]

    刘振帮, 黄华, 金晓, 袁欢, 戈弋, 何琥, 雷禄容 2015 64 018401Google Scholar

    Liu Z B, Huang H, Jin X, Yuan H, Ge Y, He H, Lei L R 2015 Acta Phys. Sin. 64 018401Google Scholar

    [15]

    Liu Z B, Huang H, Jin X, Lei L R, Zhu L, Li L L, Li S F, Yan W K, He H 2016 Phys. Plasmas 23 093110Google Scholar

    [16]

    王淦平, 金晓, 黄华, 刘振帮 2017 66 044102Google Scholar

    Wang G P, Jin X, Huang H, Liu Z B 2017 Acta Phys. Sin. 66 044102Google Scholar

    [17]

    Carlsten B E, Faehl R J, Fazio M V, Haynes W B, Stringfield R M 1994 IEEE Trans. Plasma Sci. 22 719Google Scholar

    [18]

    彭国良, 梁玉钦 2016 强激光与粒子束 28 053003Google Scholar

    Peng G L, Liang Y Q 2016 High Power Laser and Particle Beams 28 053003Google Scholar

    [19]

    薛明, 丁耀根, 王勇 2018 真空电子技术 8 43Google Scholar

    Xue M, Ding Y G, Wang R 2018 Vaccum Electron. 8 43Google Scholar

    [20]

    戴宏毅, 肖亚斌, 王同权, 张树发 2001 湖南大学学报 28 6

    Dai H Y, Xiao Y B, Wang T Q, Zhang S F 2001 J. Hunan Univ. 28 6

  • [1] 张少军, 郭智, 成加皿, 王勇, 陈家华, 刘志. 高重频硬X射线自由电子激光脉冲到达时间诊断方法研究.  , 2023, 72(10): 105203. doi: 10.7498/aps.72.20222424
    [2] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器.  , 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [3] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究.  , 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [4] 刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容. Ka波段带状注相对论扩展互作用速调管放大器的分析与设计.  , 2015, 64(10): 108404. doi: 10.7498/aps.64.108404
    [5] 吴洋, 许州, 谢鸿全, 李正红, 马乔生. 高增益相对论速调管放大器相位特性的模拟与实验研究.  , 2015, 64(8): 084102. doi: 10.7498/aps.64.084102
    [6] 刘振帮, 黄华, 金晓, 袁欢, 戈弋, 何琥, 雷禄容. 长脉冲X波段多注相对论速调管放大器的初步实验研究.  , 2015, 64(1): 018401. doi: 10.7498/aps.64.018401
    [7] 陈昭福, 黄华, 常安碧, 许州, 何琥, 雷禄容, 胡进光, 袁欢, 刘振帮. S波段长脉冲相对论速调管放大器中杂模振荡导致的脉冲缩短抑制研究.  , 2014, 63(23): 238402. doi: 10.7498/aps.63.238402
    [8] 张泽海, 舒挺, 张军, 戚祖敏. 强流电子束阻抗对相对论速调管放大器注入及群聚特性的影响分析.  , 2013, 62(4): 040701. doi: 10.7498/aps.62.040701
    [9] 陈永东, 金晓, 李正红, 黄华, 吴洋. 高增益相对论速调管放大器杂模振荡抑制研究.  , 2012, 61(22): 228501. doi: 10.7498/aps.61.228501
    [10] 刘振帮, 金晓, 黄华, 陈怀璧, 王淦平. X波段同轴多注相对论速调管放大器的初步实验研究.  , 2012, 61(23): 238402. doi: 10.7498/aps.61.238402
    [11] 刘振帮, 金晓, 黄华, 陈怀璧. X波段长脉冲同轴多注相对论速调管放大器的分析与设计.  , 2012, 61(12): 128401. doi: 10.7498/aps.61.128401
    [12] 黄华, 郭焱华, 金晓, 何琥, 雷禄容, 罗雄, 常安碧, 李正红. 相对论速调管放大器的相位特性研究.  , 2011, 60(3): 035201. doi: 10.7498/aps.60.035201
    [13] 刘振帮, 黄华, 金晓, 陈怀璧. X波段三重轴相对论速调管放大器的设计.  , 2011, 60(12): 128402. doi: 10.7498/aps.60.128402
    [14] 向飞, 谭杰, 张永辉, 王淦平, 罗敏, 曹绍云, 康强, 龚胜刚, 罗光耀, 李春霞, 金晖, 张北镇. 重频直线变压器长脉冲高功率微波驱动源研究.  , 2010, 59(7): 4620-4625. doi: 10.7498/aps.59.4620
    [15] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰. 长脉冲相对论扩展互作用腔振荡器的初步研究.  , 2010, 59(3): 1907-1912. doi: 10.7498/aps.59.1907
    [16] 杨振萍, 边清泉. 相对论速调管放大器中微波的相位抖动研究.  , 2009, 58(9): 6141-6145. doi: 10.7498/aps.58.6141
    [17] 祁春超, 左都罗, 孟凡奇, 卢彦兆, 纠智先, 程祖海. 基于光放大的长脉冲抽运太赫兹激光.  , 2009, 58(7): 4641-4646. doi: 10.7498/aps.58.4641
    [18] 黄 华, 甘延青, 雷禄容, 金 晓, 鞠炳权, 向 飞, 冯弟超, 刘 忠. S波段相对论速调管振荡器研究.  , 2008, 57(3): 1765-1770. doi: 10.7498/aps.57.1765
    [19] 黄 华, 孟凡宝, 范植开, 李正红, 方 向. 相对论速调管三轴提取腔的分析与设计.  , 2006, 55(10): 5344-5348. doi: 10.7498/aps.55.5344
    [20] 黄华, 范植开, 谭杰, 马乔生, 甘延青, 常安碧. 长脉冲相对论速调管中束流脉冲缩短的研究.  , 2004, 53(4): 1129-1135. doi: 10.7498/aps.53.1129
计量
  • 文章访问数:  6225
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 修回日期:  2020-07-07
  • 上网日期:  2020-11-02
  • 刊出日期:  2020-11-05

/

返回文章
返回
Baidu
map