-
太赫兹辐射已经成为研究稀土铁氧化物(RFeO3)的远红外响应和电子自旋特性的有效手段. 本文研究了高通量制备的稀土共掺杂SmxPr1–xFeO3单晶在零磁场下的反铁磁自旋模式(qAFM)和稀土离子的晶体场跃迁. 利用透射型太赫兹时域光谱, 实验测得Sm0.2Pr0.8FeO3和Sm0.4Pr0.6FeO3单晶的qAFM共振频率位于PrFeO3单晶和SmFeO3单晶的qAFM共振频率(分别为0.57和0.42 THz)的连线上. SmxPr1–xFeO3的qAFM模式频率随Sm3+离子掺杂浓度的增大而增大. 实验结果表明, Sm0.4Pr0.6FeO3在160 K左右发生温度诱导的自旋重取向相变. 当晶体温度低于80 K, 晶体场效应导致Sm0.2Pr0.8FeO3的吸收谱在0.5 THz附近出现宽带吸收峰. 目前的研究结果表明, 太赫兹光谱数据有助于检测高通量制备稀土铁氧体的晶体质量和稀土元素含量, 并将提高稀土掺杂对材料物性调控的分析能力.Terahertz (THz) transient has become an effective method to study the optical and electronic spin characteristics of the rare earth orthoferrites RFeO3. High-throughput grown crystal sample is sliced at different locations, then the continuously tunable rare earth elements co-doped single crystal SmxPr1–xFeO3 is studied with antiferromagnetic spin mode (qAFM) and crystal field transitions of rare earth ions under zero magnetic fields. Using THz time-domain spectroscopy, the qAFM resonance frequencies of Sm0.2Pr0.8FeO3 and Sm0.4Pr0.6FeO3 single crystals are located on the connection line of the qAFM frequencies of PrFeO3 (0.57 THz) and SmFeO3 (0.42 THz), therefore the frequency of qAFM increases linearly with doping concentration of Sm3+ ion increasing. The Sm0.4Pr0.6FeO3 crystal undergoes a temperature-induced spin reorientation phase transition at about 160 K. When the crystal temperature is lower than 80 K, a wide band absorption peak of about 0.5 THz appears in the absorption spectrum of Sm0.2Pr0.8FeO3 due to the crystal field effect. Our results show that THz spectral data not only allow us to monitor the quality of rare earth orthoferrite crystals prepared by high throughput and analyze the rare earth elements of the sample, but also improve the ability to analyze the physical properties of the co-doped RFeO3.
-
Keywords:
- terahertz time domain spectroscopy /
- antiferromagnet /
- rare earth orthoferrites /
- spin resonance
[1] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar
[2] Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotech. 11 231Google Scholar
[3] Mikhaylovskiy R V, Hendry E, Secchi A, et al. 2015 Nat. Commun. 6 8190Google Scholar
[4] Kurihara T, Watanabe H, Nakajima M, Karube S, Oto K, Otani Y, Suemoto T 2018 Phys. Rev. Lett. 120 107202Google Scholar
[5] Baierl S, Hohenleutner M, Kampfrath T, Zvezdin A K, Kimel A V, Huber R, Mikhaylovskiy R V 2016 Nat. Photon. 10 715Google Scholar
[6] Nova T F, Cartella A, Cantaluppi A, et al. 2017 Nat. Phys. 13 132Google Scholar
[7] Pierce R D, Wolfe R, Van Uitert L G 1969 J. Appl. Phys. 40 1241Google Scholar
[8] Jiang J, Song G, Wang D, Jin Z, Tian Z, Lin X, Han J, Ma G, Cao S, Cheng Z 2016 J. Phys.: Condens. Matter 28 116002Google Scholar
[9] Yamaguchi K, Kurihara T, Minami Y, Nakajima M, Suemoto T 2013 Phys. Rev. Lett. 110 137204Google Scholar
[10] Liu X, Jin Z, Zhang S, et al. 2018 J. Phys. D: Appl. Phys. 51 024001Google Scholar
[11] Li X, Bamba M, Yuan N, et al. 2018 Science 361 794Google Scholar
[12] Li R, Yuan N, Hu T, Feng Z, Ge J, Wang Y, Zheng H, Xing J, Gu H, Kang B, Zhang J, Ren W, Cao S 2018 AIP Adv. 8 115328Google Scholar
[13] Tonouchi M 2007 Nat. Photonics 1 97Google Scholar
[14] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[15] Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar
[16] Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar
[17] Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photonics 10 483Google Scholar
[18] Huisman T J, Mikhaylovskiy R V, Costa J D, et al. 2016 Nat. Nanotechnol. 11 455Google Scholar
[19] Vicario C, Ruchert C, Ardana-Lamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar
[20] Shalaby M, Vicario C, Hauri C P 2016 New J. Phys. 1 18
[21] Bonetti S, Hoffmann M, Sher M, Chen Z, Yang S, Samant M G, Parkin S S P, Durr H A 2016 Phys. Rev. Lett. 8 117
[22] Schlauderer S, Lange C, Baierl S, et al. 2019 Nature 569 7756
[23] Kampfrath T, Sell A, Klatt G, et al. 2011 Nat. Photon. 5 31Google Scholar
[24] 金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 68 167501Google Scholar
Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar
[25] Yamaguchi K, Nakajima M, Suemoto T 2010 Phys. Rev. Lett. 105 237201Google Scholar
[26] Zhou R, Jin Z, Li G, Ma G, Cheng Z, Wang X 2012 Appl. Phys. Lett. 100 061102Google Scholar
[27] Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422Google Scholar
[28] Zhang K, Xu K, Liu X, Zhang Z, Jin Z, Lin X, Li B, Cao S, Ma G 2016 Sci. Rep. 6 23648Google Scholar
[29] Song G, Jiang J, Wang X, Jin Z, Lin X, Ma G, Cao S 2013 J. Appl. Phys. 114 243104Google Scholar
[30] Song G, Jin Z, Lin X, Jiang J, Wang X, Wu H, Ma G, Cao S 2014 J. Appl. Phys. 115 163108Google Scholar
[31] Kubacka T, Johnson J A, Hoffmann M, et al. 2014 Science 343 6177
[32] Shao M, Cao S, Wang Y, Yuan S, Kang B, Zhang J, Wu A, Xu J 2011 J. Cryst. Growth 318 947Google Scholar
[33] Wang X, Cao S, Wang Y, Yuan S, Kang B, Wu A, Zhang J 2013 J. Cryst. Growth 362 216Google Scholar
[34] Cao Y, Yang Y, Xiang M, Feng Z, Kang B, Zhang J, Ren W, Cao S 2015 J. Cryst. Growth 420 90Google Scholar
[35] Zhao W, Cao S, Huang R, Cao Y, Xu K, Kang B, Zhang J, Ren W 2015 Phys. Rev. B 91 104425Google Scholar
[36] Liu X, Xie T, Guo J, et al. 2018 Appl. Phys. Lett. 113 022401Google Scholar
[37] Fu X, Xi X, Bi K, Zhou J 2013 Appl. Phys. Lett. 103 211108Google Scholar
[38] Jiang J, Jin Z, Song G, Lin X, Ma G, Cao S 2013 Appl. Phys. Lett. 103 062403Google Scholar
[39] Zeng X, Wu L, Xi X, Li B, Zhou J, 2018 Ceram. Int. 44 19054Google Scholar
[40] Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V, Rasing T, 2004 Nature 429 850Google Scholar
[41] Mikhaylovskiy R V, Huisman T J, Pisarev R V, Rasing T, Kimel A V 2017 Phys. Rev. Lett. 118 017205Google Scholar
-
图 1 (a)高通量制备准连续成分单晶SmxPr1–xFeO3示意图; (b) SmFeO3, PrFeO3 和Sm0.2Pr0.8FeO3单晶的晶体结构图
Fig. 1. (a) Experimental schematic of quasi-continuous phase formation in the high-throughput grown SmxPr1–xFeO3 (x = 0, 0.4, 0.7, 0.9, 1.0); (b) the crystallography structure of the single crystal SmFeO3, PrFeO3, and Sm0.2Pr0.8FeO3.
图 2 (a) THz-TDS实验装置示意图; (b) b切Sm0.2Pr0.8FeO3单晶(红色); (c) Sm0.4Pr0.6FeO3单晶(蓝色) 300 K时的太赫兹时域透射谱, 此时HTHz//c; 插图分别表示振荡部分(40—60 ps)的傅里叶变换光谱及其洛伦兹拟合(虚线)
Fig. 2. (a) Experimental setup diagram of THz-TDS. The THz time-domain waveforms transmitted through the b-cut (b) Sm0.2Pr0.8FeO3 and (c) Sm0.4Pr0.6FeO3 crystal at 300 K and the insets indicate the spectrum of oscillating parts obtained by Fourier transform of the waveform, which is fitted with a Lorentzian contour (dotted line).
图 4 b切Sm0.4Pr0.6FeO3单晶qAFM模式的共振频率和振幅随温度的关系; 插图表示Fe3+离子亚晶格的磁结构: 低温相(Г2 )、中间相(Г4 )、高温相(Г24 )
Fig. 4. The frequencies and amplitudes of the qAFM resonances of b-cut Sm0.4 Pr0.6FeO3 crystal. Inset shows the magnetic structure of RFeO3 in the low-temperature(Г2 ), intermediate(Г4 ), and high temperature(Г24 )phases.
图 5 (a) Sm0.2Pr0.8FeO3单晶温度依赖的太赫兹时域谱, 为了表达更为清楚, 不同温度的时域光谱在纵轴方向做了等间距的平移; 40, 80和300 K时Sm0.2Pr0.8FeO3单晶的(b)折射率和(c)吸收系数, 插图为Pr3+离子基态在晶体场中能级劈裂示意图
Fig. 5. (a) The temperature dependent THz waveforms transmitted through the Sm0.2Pr0.8FeO3 single crystal; (b) refractive indices and (c) absorption spectra of Sm0.2Pr0.8FeO3 at 40, 80, and 300 K. The inset in (c) shows the energy level splitting of Pr3+ ion in the ground state crystal field.
-
[1] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar
[2] Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotech. 11 231Google Scholar
[3] Mikhaylovskiy R V, Hendry E, Secchi A, et al. 2015 Nat. Commun. 6 8190Google Scholar
[4] Kurihara T, Watanabe H, Nakajima M, Karube S, Oto K, Otani Y, Suemoto T 2018 Phys. Rev. Lett. 120 107202Google Scholar
[5] Baierl S, Hohenleutner M, Kampfrath T, Zvezdin A K, Kimel A V, Huber R, Mikhaylovskiy R V 2016 Nat. Photon. 10 715Google Scholar
[6] Nova T F, Cartella A, Cantaluppi A, et al. 2017 Nat. Phys. 13 132Google Scholar
[7] Pierce R D, Wolfe R, Van Uitert L G 1969 J. Appl. Phys. 40 1241Google Scholar
[8] Jiang J, Song G, Wang D, Jin Z, Tian Z, Lin X, Han J, Ma G, Cao S, Cheng Z 2016 J. Phys.: Condens. Matter 28 116002Google Scholar
[9] Yamaguchi K, Kurihara T, Minami Y, Nakajima M, Suemoto T 2013 Phys. Rev. Lett. 110 137204Google Scholar
[10] Liu X, Jin Z, Zhang S, et al. 2018 J. Phys. D: Appl. Phys. 51 024001Google Scholar
[11] Li X, Bamba M, Yuan N, et al. 2018 Science 361 794Google Scholar
[12] Li R, Yuan N, Hu T, Feng Z, Ge J, Wang Y, Zheng H, Xing J, Gu H, Kang B, Zhang J, Ren W, Cao S 2018 AIP Adv. 8 115328Google Scholar
[13] Tonouchi M 2007 Nat. Photonics 1 97Google Scholar
[14] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[15] Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar
[16] Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar
[17] Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photonics 10 483Google Scholar
[18] Huisman T J, Mikhaylovskiy R V, Costa J D, et al. 2016 Nat. Nanotechnol. 11 455Google Scholar
[19] Vicario C, Ruchert C, Ardana-Lamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar
[20] Shalaby M, Vicario C, Hauri C P 2016 New J. Phys. 1 18
[21] Bonetti S, Hoffmann M, Sher M, Chen Z, Yang S, Samant M G, Parkin S S P, Durr H A 2016 Phys. Rev. Lett. 8 117
[22] Schlauderer S, Lange C, Baierl S, et al. 2019 Nature 569 7756
[23] Kampfrath T, Sell A, Klatt G, et al. 2011 Nat. Photon. 5 31Google Scholar
[24] 金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 68 167501Google Scholar
Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar
[25] Yamaguchi K, Nakajima M, Suemoto T 2010 Phys. Rev. Lett. 105 237201Google Scholar
[26] Zhou R, Jin Z, Li G, Ma G, Cheng Z, Wang X 2012 Appl. Phys. Lett. 100 061102Google Scholar
[27] Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422Google Scholar
[28] Zhang K, Xu K, Liu X, Zhang Z, Jin Z, Lin X, Li B, Cao S, Ma G 2016 Sci. Rep. 6 23648Google Scholar
[29] Song G, Jiang J, Wang X, Jin Z, Lin X, Ma G, Cao S 2013 J. Appl. Phys. 114 243104Google Scholar
[30] Song G, Jin Z, Lin X, Jiang J, Wang X, Wu H, Ma G, Cao S 2014 J. Appl. Phys. 115 163108Google Scholar
[31] Kubacka T, Johnson J A, Hoffmann M, et al. 2014 Science 343 6177
[32] Shao M, Cao S, Wang Y, Yuan S, Kang B, Zhang J, Wu A, Xu J 2011 J. Cryst. Growth 318 947Google Scholar
[33] Wang X, Cao S, Wang Y, Yuan S, Kang B, Wu A, Zhang J 2013 J. Cryst. Growth 362 216Google Scholar
[34] Cao Y, Yang Y, Xiang M, Feng Z, Kang B, Zhang J, Ren W, Cao S 2015 J. Cryst. Growth 420 90Google Scholar
[35] Zhao W, Cao S, Huang R, Cao Y, Xu K, Kang B, Zhang J, Ren W 2015 Phys. Rev. B 91 104425Google Scholar
[36] Liu X, Xie T, Guo J, et al. 2018 Appl. Phys. Lett. 113 022401Google Scholar
[37] Fu X, Xi X, Bi K, Zhou J 2013 Appl. Phys. Lett. 103 211108Google Scholar
[38] Jiang J, Jin Z, Song G, Lin X, Ma G, Cao S 2013 Appl. Phys. Lett. 103 062403Google Scholar
[39] Zeng X, Wu L, Xi X, Li B, Zhou J, 2018 Ceram. Int. 44 19054Google Scholar
[40] Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V, Rasing T, 2004 Nature 429 850Google Scholar
[41] Mikhaylovskiy R V, Huisman T J, Pisarev R V, Rasing T, Kimel A V 2017 Phys. Rev. Lett. 118 017205Google Scholar
计量
- 文章访问数: 6527
- PDF下载量: 153
- 被引次数: 0