搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型

张梦 姚若河 刘玉荣 耿魁伟

引用本文:
Citation:

短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型

张梦, 姚若河, 刘玉荣, 耿魁伟

Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor

Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei
PDF
HTML
导出引用
  • 随着金属-氧化物半导体场效应晶体管(MOSFET)器件的尺寸进入到纳米量级, 器件的噪声机理逐渐开始转变. 传统的热噪声与漏源电流模型精度出现下降, 散粒噪声成为器件噪声不可忽略的因素. 本文通过求解能量平衡方程, 推导了短沟道MOSFET器件的沟道电子温度和电子速度表达式, 由此建立了漏源电流模型; 基于漏源电流模型建立了适用于40 nm以下器件的散粒噪声模型和热噪声模型. 研究了n型金属-氧化物半导体场效应晶体管(NMOSFET)器件在不同偏置电压下, 器件尺寸对散粒噪声抑制因子和噪声机理的影响. 研究表明: 已有的热噪声模型与散粒噪声模型的精度随着器件尺寸的减小而下降, 导致相应的散粒噪声抑制因子被高估. 当NMOSFET器件的尺寸减小到10 nm时, 器件的噪声需由热噪声与受抑制的散粒噪声共同表征. 本文建立的短沟道器件散粒噪声模型可应用于纳米尺寸NMOSFET器件噪声性能的分析与建模.
    With the development of the semiconductor manufacturing process, the size of the metal-oxide-semiconductor field-effect transistor (MOSFET) device has been on a tens-of-nanometer scale. The shot noise appears in the excess channel noise of the device, and the noise mechanism of the device begins to change gradually. Due to the fact that the electron temperature gradient is neglected in calculation and the significant enhancement of the lateral channel electric field are not taken into consideration, the traditional electron temperature model and the thermal noise model underestimate the effect of hot carrier effects, resulting in the underestimate of the thermal noise. Moreover, the traditional drain-source current model ignores the electron temperature gradient in the calculation and does not include the effect of the electron temperature on the mobility degradation effect either. Therefore, the calculation accuracy of the shot noise and the Fano factor on the basis of the traditional model will be reduced to a certain extent as the size of the device decreases, thus affecting the analysis of the noise mechanism of the device. In this paper, we establish the channel electron temperature model and the electron velocity model by solving the energy balance equation, and develop the drain source current model based on these two models. Moreover, the shot noise model and the thermal noise model suitable for devices below 40 nm are established based on the drain-source current model. Meanwhile, the Fano factor of the shot noise is calculated. The influence of the MOSFET device size on the noise mechanism and the Fano factor of the shot noise are also investigated when the device is under different bias voltages. The results show that the accuracy of the existing thermal noise model and the shot noise model decline as the device size decreases, which eventually leads the Fano factor of the shot noise to be overestimated. When the size of the NMOSFET device is below 20 nm, the shot noise affects the device noise in the strong inversion region. With the size decreasing, the characteristic of the noise mechanism of the NMOSFET device changes from the characteristic of single thermal noise to the common characteristic of both the thermal noise and the shot noise. When the NMOSFET device size is scaled down to 10 nm, the channel noise of the device can no longer be characterized by the thermal noise alone. Instead, the noise mechanism of the device changes and is characterized by both the channel thermal noise and the suppressed shot noise. The shot noise has become an important factor that contributes to the excessive noise in the device.
      通信作者: 姚若河, phrhyao@scut.edu.cn
      Corresponding author: Yao Ruo-He, phrhyao@scut.edu.cn
    [1]

    Scholten A J, Tiemeijer L F, Duijnhoven A T A Z, Havens R J, Kort R, Langevelde R, Klaassen D B M, Jeamsaksiri W, Velghe R M D A 2005 International Conference on Noise and Fluctuations Salamanca, Spain, September 19−23, 2005 p735

    [2]

    贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪 2012 61 127202Google Scholar

    Jia X F, Du L, Tang D H, Wang T L, Chen W H 2012 Acta Phys. Sin. 61 127202Google Scholar

    [3]

    Do V A, Dollfus P, Nguyen V L 2007 J. Comput. Electron. 6 125Google Scholar

    [4]

    Spathis C, Georgakopoulou K, Birbas A 2013 22nd International Conference on Noise and Fluctuations (ICNF) Montpellier, France, June 24−28, 2013 p1

    [5]

    Navid R 2007 J. Appl. Phys. 101 124501Google Scholar

    [6]

    Jia X F, He L 2017 AIP Adv. 7 055202Google Scholar

    [7]

    Teng H F, Jang S L, Juang M H 2003 Solid-State Electron. 47 2043Google Scholar

    [8]

    Chan L H K, Yeo K S, Chew K W J, Ong S N, Loo X S, Boon C C, Do M A 2012 IEEE Electron Device Lett. 33 1117Google Scholar

    [9]

    唐冬和, 杜磊, 王婷岚, 陈华, 贾晓菲 2011 60 097202Google Scholar

    Tang D H, Du L, Wang T L, Chen H, Jia X F 2011 Acta Phys. Sin. 60 097202Google Scholar

    [10]

    Jeon J, Kang M 2016 Jpn. J. Appl. Phys. 55 054102Google Scholar

    [11]

    Jeon J, Lee J, Kim J, Park C H, Lee H, Oh H, Kang H K, Park B G, Shin H 2009 Symposium on VLSI Technology Honolulu, HI, USA, June 15−17, 2009 p48

    [12]

    Smit G D J, Scholten A J, Pijper R M T, Tiemeijer L F, Toorn R V D, Klaassen D B M 2014 IEEE Trans. Electron Devices 61 245Google Scholar

    [13]

    王军, 王林, 王丹丹 2016 65 237102Google Scholar

    Wang J, Wang L, Wang D D 2016 Acta Phys. Sin. 65 237102Google Scholar

    [14]

    Wang J, Peng X M, Liu Z J, Wang L, Luo Z, Wang D D 2018 Chin. Phys. B 27 027201Google Scholar

    [15]

    Mahajan V M, Patalay P R, Jindal R P, Shichijo H, Martin S, Hou F C, Machala C, Trombley D E 2012 IEEE Trans. Electron Devices 59 197Google Scholar

    [16]

    Chen X S, Chen C H, Deen M J 2017 International Conference on Noise and Fluctuations (ICNF) Vilnius, Lithuania, June 20−13, 2017 p1

    [17]

    Spathis C, Birbas A, Georgakopoulou K 2015 AIP Adv. 5 087114Google Scholar

    [18]

    Wang J 2017 Electron. Lett. 53 1671Google Scholar

    [19]

    Barral V, Poiroux T, Saint-Martin J, Munteanu D, Autran J L, Deleonibus S 2009 IEEE Trans. Electron Devices 56 408Google Scholar

    [20]

    Shen Y F, Cui J, Mohammadi S 2017 Solid-State Electron. 131 45Google Scholar

    [21]

    Chen X S, Chih H C, Ryan L 2018 IEEE Trans. Electron Devices 65 1502Google Scholar

    [22]

    Lu Z Q, Lai F C 2009 Analog. Integr. Circ. Process 59 185Google Scholar

    [23]

    Lee K Y 2017 Solid-State Electron. 130 63Google Scholar

    [24]

    Chen C H, Deen M J 2002 IEEE Trans. Electron Devices 49 1484Google Scholar

    [25]

    艾罗拉 N 著 (张兴, 李映雪 译) 1999 用于VLSI模拟的小尺寸MOS器件模型 (北京: 科学出版社) 第248−251页

    Arora N (translated by Zhang X, Li Y X) 1999 MOSFET Models for VLSI Circuit Simulation (Beijing: Science Press) pp248−251 (in Chinese)

    [26]

    Lim K Y, Zhou X 2002 Microelectron. Reliab. 42 1857Google Scholar

    [27]

    Wei C Q, See G H, Zhou X, Chan L 2008 IEEE Trans. Electron Devices 55 2378Google Scholar

    [28]

    Ong S N, Yeo K S, Chew K W J, Chan L H K, Loo X S, Boon C C, Do M A 2012 Solid-State Electron. 68 32Google Scholar

    [29]

    Lundstrom M 2009 Fundamentals of Carrier Transport (2nd Ed.) (Cambridge: Cambridge University Press) pp230−293

    [30]

    Tsividis Y 2011 Operation and Modeling of the MOS Transistor (3rd Ed.) (New York: Oxford University Press) pp194−201

    [31]

    Ong S N, Yeo K S, Chew K W J, Chan L H K, Loo X S, Boon C C, Do M A 2012 Solid-State Electron. 72 8Google Scholar

    [32]

    Paasschens J C J, Scholten A J, van Langevelde R 2005 IEEE Trans. Electron Devices 52 2463Google Scholar

    [33]

    Li Z Y, Ma J G, Ye Y Z, Yu M Y 2009 IEEE Trans. Electron Devices 56 1300Google Scholar

    [34]

    张梦, 姚若河, 刘玉荣 2020 69 057101Google Scholar

    Zhang M, Yao R H, Liu Y R 2020 Acta Phys. Sin. 69 057101Google Scholar

    [35]

    Chen C H, Chen D, Lee R, Lei P, Wan D 2013 Proceedings of the IEEE 2013 Custom Integrated Circuits Conference San Jose, CA, USA, September 22−25, 2013 p1

    [36]

    Yamaguchi K, Sakurai S, Tomizawa K 2010 Jpn. J. Appl. Phys. 49 024303Google Scholar

  • 图 1  NMOSFET器件的结构示意图

    Fig. 1.  Structure diagram of the NMOSFET device.

    图 2  沟道中含虚拟直流源的晶体管结构图

    Fig. 2.  Schematic diagram of the transistor with a fictitious dc source in the channel.

    图 3  全散粒噪声和热噪声随栅源偏置电压的变化(Leff = 40 nm)

    Fig. 3.  Full-shot noise and thermal noise vs. gate-source bias voltage (Leff = 40 nm).

    图 4  散粒噪声抑制因子随栅源偏置电压的变化(Leff = 40 nm)

    Fig. 4.  Fano factor of shot noise vs. gate-source bias voltage (Leff = 40 nm).

    图 5  全散粒噪声和热噪声随栅源偏置电压的变化(Leff = 20 nm)

    Fig. 5.  Full-shot noise and thermal noise vs. gate-source bias voltage (Leff = 20 nm).

    图 6  散粒噪声抑制因子随栅源偏置电压的变化(Leff = 20 nm)

    Fig. 6.  Fano factor of shot noise vs. gate-source bias voltage (Leff = 20 nm).

    图 7  全散粒噪声和热噪声随栅源偏置电压的变化(Leff = 10 nm)

    Fig. 7.  Full-shot noise and thermal noise vs. gate-source bias voltage (Leff = 10 nm).

    图 8  散粒噪声抑制因子随栅源偏置电压的变化(Leff = 10 nm)

    Fig. 8.  Fano factor of shot noise vs. gate-source bias voltage (Leff = 10 nm).

    Baidu
  • [1]

    Scholten A J, Tiemeijer L F, Duijnhoven A T A Z, Havens R J, Kort R, Langevelde R, Klaassen D B M, Jeamsaksiri W, Velghe R M D A 2005 International Conference on Noise and Fluctuations Salamanca, Spain, September 19−23, 2005 p735

    [2]

    贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪 2012 61 127202Google Scholar

    Jia X F, Du L, Tang D H, Wang T L, Chen W H 2012 Acta Phys. Sin. 61 127202Google Scholar

    [3]

    Do V A, Dollfus P, Nguyen V L 2007 J. Comput. Electron. 6 125Google Scholar

    [4]

    Spathis C, Georgakopoulou K, Birbas A 2013 22nd International Conference on Noise and Fluctuations (ICNF) Montpellier, France, June 24−28, 2013 p1

    [5]

    Navid R 2007 J. Appl. Phys. 101 124501Google Scholar

    [6]

    Jia X F, He L 2017 AIP Adv. 7 055202Google Scholar

    [7]

    Teng H F, Jang S L, Juang M H 2003 Solid-State Electron. 47 2043Google Scholar

    [8]

    Chan L H K, Yeo K S, Chew K W J, Ong S N, Loo X S, Boon C C, Do M A 2012 IEEE Electron Device Lett. 33 1117Google Scholar

    [9]

    唐冬和, 杜磊, 王婷岚, 陈华, 贾晓菲 2011 60 097202Google Scholar

    Tang D H, Du L, Wang T L, Chen H, Jia X F 2011 Acta Phys. Sin. 60 097202Google Scholar

    [10]

    Jeon J, Kang M 2016 Jpn. J. Appl. Phys. 55 054102Google Scholar

    [11]

    Jeon J, Lee J, Kim J, Park C H, Lee H, Oh H, Kang H K, Park B G, Shin H 2009 Symposium on VLSI Technology Honolulu, HI, USA, June 15−17, 2009 p48

    [12]

    Smit G D J, Scholten A J, Pijper R M T, Tiemeijer L F, Toorn R V D, Klaassen D B M 2014 IEEE Trans. Electron Devices 61 245Google Scholar

    [13]

    王军, 王林, 王丹丹 2016 65 237102Google Scholar

    Wang J, Wang L, Wang D D 2016 Acta Phys. Sin. 65 237102Google Scholar

    [14]

    Wang J, Peng X M, Liu Z J, Wang L, Luo Z, Wang D D 2018 Chin. Phys. B 27 027201Google Scholar

    [15]

    Mahajan V M, Patalay P R, Jindal R P, Shichijo H, Martin S, Hou F C, Machala C, Trombley D E 2012 IEEE Trans. Electron Devices 59 197Google Scholar

    [16]

    Chen X S, Chen C H, Deen M J 2017 International Conference on Noise and Fluctuations (ICNF) Vilnius, Lithuania, June 20−13, 2017 p1

    [17]

    Spathis C, Birbas A, Georgakopoulou K 2015 AIP Adv. 5 087114Google Scholar

    [18]

    Wang J 2017 Electron. Lett. 53 1671Google Scholar

    [19]

    Barral V, Poiroux T, Saint-Martin J, Munteanu D, Autran J L, Deleonibus S 2009 IEEE Trans. Electron Devices 56 408Google Scholar

    [20]

    Shen Y F, Cui J, Mohammadi S 2017 Solid-State Electron. 131 45Google Scholar

    [21]

    Chen X S, Chih H C, Ryan L 2018 IEEE Trans. Electron Devices 65 1502Google Scholar

    [22]

    Lu Z Q, Lai F C 2009 Analog. Integr. Circ. Process 59 185Google Scholar

    [23]

    Lee K Y 2017 Solid-State Electron. 130 63Google Scholar

    [24]

    Chen C H, Deen M J 2002 IEEE Trans. Electron Devices 49 1484Google Scholar

    [25]

    艾罗拉 N 著 (张兴, 李映雪 译) 1999 用于VLSI模拟的小尺寸MOS器件模型 (北京: 科学出版社) 第248−251页

    Arora N (translated by Zhang X, Li Y X) 1999 MOSFET Models for VLSI Circuit Simulation (Beijing: Science Press) pp248−251 (in Chinese)

    [26]

    Lim K Y, Zhou X 2002 Microelectron. Reliab. 42 1857Google Scholar

    [27]

    Wei C Q, See G H, Zhou X, Chan L 2008 IEEE Trans. Electron Devices 55 2378Google Scholar

    [28]

    Ong S N, Yeo K S, Chew K W J, Chan L H K, Loo X S, Boon C C, Do M A 2012 Solid-State Electron. 68 32Google Scholar

    [29]

    Lundstrom M 2009 Fundamentals of Carrier Transport (2nd Ed.) (Cambridge: Cambridge University Press) pp230−293

    [30]

    Tsividis Y 2011 Operation and Modeling of the MOS Transistor (3rd Ed.) (New York: Oxford University Press) pp194−201

    [31]

    Ong S N, Yeo K S, Chew K W J, Chan L H K, Loo X S, Boon C C, Do M A 2012 Solid-State Electron. 72 8Google Scholar

    [32]

    Paasschens J C J, Scholten A J, van Langevelde R 2005 IEEE Trans. Electron Devices 52 2463Google Scholar

    [33]

    Li Z Y, Ma J G, Ye Y Z, Yu M Y 2009 IEEE Trans. Electron Devices 56 1300Google Scholar

    [34]

    张梦, 姚若河, 刘玉荣 2020 69 057101Google Scholar

    Zhang M, Yao R H, Liu Y R 2020 Acta Phys. Sin. 69 057101Google Scholar

    [35]

    Chen C H, Chen D, Lee R, Lei P, Wan D 2013 Proceedings of the IEEE 2013 Custom Integrated Circuits Conference San Jose, CA, USA, September 22−25, 2013 p1

    [36]

    Yamaguchi K, Sakurai S, Tomizawa K 2010 Jpn. J. Appl. Phys. 49 024303Google Scholar

  • [1] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [2] 蓝康, 杜倩, 康丽莎, 姜露静, 林振宇, 张延惠. 基于量子点接触的开放双量子点系统电子转移特性.  , 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [3] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性.  , 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [4] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器.  , 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [5] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型.  , 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [6] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力. 极低温散粒噪声测试系统及隧道结噪声测量.  , 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [7] 颜志猛, 王静, 郭健宏. Majorana零模式的电导与低压振荡散粒噪声.  , 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [8] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [9] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究.  , 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [10] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性.  , 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [11] 刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅. 超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性.  , 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [12] 贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪. 准弹道输运纳米MOSFET散粒噪声的抑制研究.  , 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [13] 陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚. 电子器件散粒噪声测试方法研究.  , 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [14] 梁志鹏, 董正超. 半导体/磁性d波超导隧道结中的散粒噪声.  , 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [15] 施振刚, 文伟, 谌雄文, 向少华, 宋克慧. 双量子点电荷比特的散粒噪声谱.  , 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [16] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性.  , 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [17] 陈 华, 杜 磊, 庄奕琪. 相干介观系统中散粒噪声的Monte Carlo模拟方法研究.  , 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [18] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性.  , 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [19] 张志勇, 王太宏. 用散粒噪声测量碳纳米管中Luttinger参数.  , 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [20] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声.  , 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
计量
  • 文章访问数:  8311
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-05
  • 修回日期:  2020-05-23
  • 上网日期:  2020-06-01
  • 刊出日期:  2020-09-05

/

返回文章
返回
Baidu
map