-
为了更加准确地描述复杂非保守系统的动力学行为, 将Herglotz变分原理推广到分数阶模型, 研究分数阶非保守Lagrange系统的绝热不变量. 首先, 基于Herglotz变分问题, 导出分数阶非保守Lagrange系统的Herglotz型微分变分原理并进一步得到分数阶非保守Lagrange系统的运动微分方程; 其次, 引进无限小单参数变换, 由等时变分和非等时变分的关系, 导出了分数阶非保守Lagrange系统的Herglotz型精确不变量; 再次, 研究小扰动对分数阶Lagrange系统的影响, 建立了基于Caputo导数的分数阶Lagrange系统的绝热不变量存在的条件, 得到了该系统的Herglotz型绝热不变量; 最后, 举例说明结果的应用.
-
关键词:
- 非保守Lagrange系统 /
- Herglotz广义变分原理 /
- 不变量 /
- 分数阶微积分
The Herglotz variational problem is also known as Herglotz generalized variational principle whose action functional is defined by differential equation. Unlike the classical variational principle, the Herglotz variational principle gives a variational description of a holonomic non-conservative system. The Herglotz variational principle can describe not only all physical processes that can be described by the classical variational principlen, but also the problems that the classical variational principle is not applicable for. If the Lagrangian or Hamiltonian does not depend on the action functional, the Herglotz variational principle reduces to the classical integral variational principle. In this work, in order to describe the dynamical behavior of complex non-conservative system more accurately, we extend the Herglotz variational principle to the fractional order model, and study the adiabatic invariant for fractional order non-conservative Lagrangian system. Firstly, based on the Herglotz variational problem, the differential variational principle of Herglotz type and the differential equations of motion of the fractional non-conservative Lagrangian system are derived. Secondly, according to the relationship between the isochronal variation and the nonisochronal variation, the transformation of invariance condition of Herglotz differential variational principle is established and the exact invariants of the system are derived. Thirdly, the effects of small perturbations on fractional non-conservative Lagrangian systems are studied, the conditions for the existence of adiabatic invariants for the Lagrangian systems of Herglotz type based on Caputo derivatives are established, and the adiabatic invariants of Herglotz type are obtained. In addition, the exact invariant and adiabatic invariant of fractional non-conservative Hamiltonian system can be obtained by Legendre transformation. When$ \alpha \to 1$ , the Herglotz differential variational principle for fractional non-conservative Lagrangian system degrades into classical Herglotz differential variational principle, and the corresponding exact invariants and adiabatic invariants also degenerate into the classical exact invariants and adiabatic invariants of Herglotz type. At the end of the paper, the fractional order damped oscillator of Herglotz type is discussed as an example to demonstrate the results.-
Keywords:
- non-conservative Lagrangian system /
- Herglotz generalized variational principle /
- invariants /
- fractional calculus
[1] Herglotz G 1979 Gesammelte Schriften (Göttingen: Vandenhoeck & Ruprecht) p1
[2] Georgieva B, Guenter R 2002 Topol. Methods Nonlinear Anal. 20 261Google Scholar
[3] Georgieva B, Guenter R, Bodurov T 2003 J. Math. Phys. 44 3911Google Scholar
[4] Santos S P S, Martins N, Torres D F M 2014 Vietnam J. Math. 42 409Google Scholar
[5] Santos S P S, Martins N and Torres D F M 2015 Discrete Contin. Dyn. Syst. 35 4593Google Scholar
[6] Zhang Y, Tian X 2019 Phys. Lett. A 383 691
[7] Zhang Y 2017 Acta Mech. 228 1481Google Scholar
[8] Zhang Y, Tian X 2018 Chin. Phys. B 27 090502Google Scholar
[9] 张毅 2019 南京理工大学学报 43 759Google Scholar
Zhang Y 2019 J. Nanjing Univ. Sci. Technol. 43 759Google Scholar
[10] 张毅 2016 力学学报 48 1382Google Scholar
Zhang Y 2016 Chin. J.Theor. Appl. Mech. 48 1382Google Scholar
[11] Tian X, Zhang Y 2018 Commun. Theor. Phys. 70 280Google Scholar
[12] Tian X, Zhang Y 2019 Chaos, Solitons Fractals 119 50Google Scholar
[13] 赵跃宇, 梅凤翔 1996 力学学报 28 45Google Scholar
Zhao Y Y, Mei F X 1996 Chin. J.Theor. Appl. Mech. 28 45Google Scholar
[14] Chen X W, Zhang R C, Mei F X 2000 Acta Mech. Sin. 16 282Google Scholar
[15] Chen X W, Li Y M, Zhao Y H 2005 Phys. Lett. A 337 274Google Scholar
[16] Chen X W, Zhao Y H, Li Y M 2005 Commun. Theor. Phys. 44 773Google Scholar
[17] 张毅, 范存新, 梅凤翔 2006 55 3237Google Scholar
Zhang Y, Fan C X, Mei F X 2006 Acta Phys. Sin. 55 3237Google Scholar
[18] 张毅 2006 55 3833Google Scholar
Zhang Y 2006 Acta Phys. Sin. 55 3833Google Scholar
[19] Jiang W, Li L, Li Z, Luo S K 2012 Nonlinear Dyn. 67 1075Google Scholar
[20] Luo S K, Chen X W, Guo Y X 2007 Chin. Phys. B 16 3176Google Scholar
[21] Ding N, Fang J H 2010 Commun. Theor. Phys. 54 785Google Scholar
[22] Yang M J, Luo S K 2018 Int. J. Non Linear Mech. 101 16Google Scholar
[23] Luo S K, Yang M J, Zhang X T, Dai Y 2018 Acta Mech. 229 1833Google Scholar
[24] Song C J, Zhang Y 2017 Int. J. Non Linear Mech. 90 32Google Scholar
[25] Kilbas A A, Srivastava H M, Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier B V) p1
[26] 陈文, 孙洪广, 李西成 2010 力学与工程问题的分数阶导数建模 (北京: 北京科学出版社) 第113−188页
Chen W, Sun H G, Li X C 2010 Fractional Derivative Modeling of Mechanical and Engineering Problems (Beijing: Beijing Science Press) pp113−188 (in Chinese)
[27] Vujanovic B D, Jones S E 1989 Variational Methods in Nonconservative Phenomena (Boston: Academic Press) p80
[28] Scarlet W, Cantrijn F 1981 SIAM Rev. 23 467Google Scholar
[29] Tian X, Zhang Y 2020 Theor. Math. Phys. 202 126Google Scholar
[30] Balachandran K, Govindaraj V, Rivero M, Trujillo J J 2015 Appl. Math. Comput. 257 66
[31] Garra R, Taverna G S, Torres D F M 2017 Chaos, Solitons Fractals 102 94Google Scholar
[32] Stanislavsky A A 2004 Phys. Rev. E 70 051103Google Scholar
[33] Stanislavsky A A 2005 Physica A 354 101Google Scholar
[34] Narahari B N, Hanneken J W, Enck T, Clarke T 2001 Physica A 297 361Google Scholar
[35] Narahari B N, Hanneken J W, Clarke T 2002 Physica A 309 275Google Scholar
[36] Kang Y G, Zhang X E 2010 Physica B 405 369Google Scholar
[37] Tofighi A 2003 Physica A 329 29Google Scholar
[38] Ryabov Y E, Puzenko A 2002 Phys. Rev. B 66 184201Google Scholar
[39] Georgieva B 2010 Ann. Sofia Univ. Fac. Math. Inf. 100 113
[40] Zhang Y 2020 Trans. Nanjing Univ. Aero. Astro. 37 13
-
[1] Herglotz G 1979 Gesammelte Schriften (Göttingen: Vandenhoeck & Ruprecht) p1
[2] Georgieva B, Guenter R 2002 Topol. Methods Nonlinear Anal. 20 261Google Scholar
[3] Georgieva B, Guenter R, Bodurov T 2003 J. Math. Phys. 44 3911Google Scholar
[4] Santos S P S, Martins N, Torres D F M 2014 Vietnam J. Math. 42 409Google Scholar
[5] Santos S P S, Martins N and Torres D F M 2015 Discrete Contin. Dyn. Syst. 35 4593Google Scholar
[6] Zhang Y, Tian X 2019 Phys. Lett. A 383 691
[7] Zhang Y 2017 Acta Mech. 228 1481Google Scholar
[8] Zhang Y, Tian X 2018 Chin. Phys. B 27 090502Google Scholar
[9] 张毅 2019 南京理工大学学报 43 759Google Scholar
Zhang Y 2019 J. Nanjing Univ. Sci. Technol. 43 759Google Scholar
[10] 张毅 2016 力学学报 48 1382Google Scholar
Zhang Y 2016 Chin. J.Theor. Appl. Mech. 48 1382Google Scholar
[11] Tian X, Zhang Y 2018 Commun. Theor. Phys. 70 280Google Scholar
[12] Tian X, Zhang Y 2019 Chaos, Solitons Fractals 119 50Google Scholar
[13] 赵跃宇, 梅凤翔 1996 力学学报 28 45Google Scholar
Zhao Y Y, Mei F X 1996 Chin. J.Theor. Appl. Mech. 28 45Google Scholar
[14] Chen X W, Zhang R C, Mei F X 2000 Acta Mech. Sin. 16 282Google Scholar
[15] Chen X W, Li Y M, Zhao Y H 2005 Phys. Lett. A 337 274Google Scholar
[16] Chen X W, Zhao Y H, Li Y M 2005 Commun. Theor. Phys. 44 773Google Scholar
[17] 张毅, 范存新, 梅凤翔 2006 55 3237Google Scholar
Zhang Y, Fan C X, Mei F X 2006 Acta Phys. Sin. 55 3237Google Scholar
[18] 张毅 2006 55 3833Google Scholar
Zhang Y 2006 Acta Phys. Sin. 55 3833Google Scholar
[19] Jiang W, Li L, Li Z, Luo S K 2012 Nonlinear Dyn. 67 1075Google Scholar
[20] Luo S K, Chen X W, Guo Y X 2007 Chin. Phys. B 16 3176Google Scholar
[21] Ding N, Fang J H 2010 Commun. Theor. Phys. 54 785Google Scholar
[22] Yang M J, Luo S K 2018 Int. J. Non Linear Mech. 101 16Google Scholar
[23] Luo S K, Yang M J, Zhang X T, Dai Y 2018 Acta Mech. 229 1833Google Scholar
[24] Song C J, Zhang Y 2017 Int. J. Non Linear Mech. 90 32Google Scholar
[25] Kilbas A A, Srivastava H M, Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier B V) p1
[26] 陈文, 孙洪广, 李西成 2010 力学与工程问题的分数阶导数建模 (北京: 北京科学出版社) 第113−188页
Chen W, Sun H G, Li X C 2010 Fractional Derivative Modeling of Mechanical and Engineering Problems (Beijing: Beijing Science Press) pp113−188 (in Chinese)
[27] Vujanovic B D, Jones S E 1989 Variational Methods in Nonconservative Phenomena (Boston: Academic Press) p80
[28] Scarlet W, Cantrijn F 1981 SIAM Rev. 23 467Google Scholar
[29] Tian X, Zhang Y 2020 Theor. Math. Phys. 202 126Google Scholar
[30] Balachandran K, Govindaraj V, Rivero M, Trujillo J J 2015 Appl. Math. Comput. 257 66
[31] Garra R, Taverna G S, Torres D F M 2017 Chaos, Solitons Fractals 102 94Google Scholar
[32] Stanislavsky A A 2004 Phys. Rev. E 70 051103Google Scholar
[33] Stanislavsky A A 2005 Physica A 354 101Google Scholar
[34] Narahari B N, Hanneken J W, Enck T, Clarke T 2001 Physica A 297 361Google Scholar
[35] Narahari B N, Hanneken J W, Clarke T 2002 Physica A 309 275Google Scholar
[36] Kang Y G, Zhang X E 2010 Physica B 405 369Google Scholar
[37] Tofighi A 2003 Physica A 329 29Google Scholar
[38] Ryabov Y E, Puzenko A 2002 Phys. Rev. B 66 184201Google Scholar
[39] Georgieva B 2010 Ann. Sofia Univ. Fac. Math. Inf. 100 113
[40] Zhang Y 2020 Trans. Nanjing Univ. Aero. Astro. 37 13
计量
- 文章访问数: 4600
- PDF下载量: 44
- 被引次数: 0