-
本文发现很有趣的量子效应, 纳米硅表面掺杂氧而形成的电子局域态中电子自旋能级间隔会有明显的展宽, 被约束在局域态中的电子自旋 ±1/2能态间距被展宽两个数量级, 达到100 meV左右. 本文用纳秒脉冲激光在氧氛围中制备了掺杂氧纳米硅结构并形成电子局域态, 在实验检测中探测到了电子自旋能级展宽效应; 用第一性原理模拟计算方法研究了电子自旋能级展宽效应, 具体地对于纳米硅量子点和量子层结构表面的硅氧双键与硅氧桥键局域态中的电子自旋量子态分别进行了模拟计算研究, 证实了实验结果. 结合实验与计算研究结果分析, 建立起电子自旋能级展宽效应的物理模型. 这些工作在量子信息高保真存储与处理上会有很好的应用.It is interesting that the electronic spin gap is opened in the localized states of nanosilicon doped with oxygen, where spin splitting of the individual two-level ±1/2 states isolated in the localized states increases by 1−2 order of magnitude (on the order of 100 meV). The opening spin level effect in the localized states is observed in experiment, which originates from the twin states of quantum vibration measured in the photovaltaic system consisting of the quantum dots and the quantum layers of silicon prepared by using a pulsed laser in an oxygen environment. The opening spin level effect in the localized states is investigated by using density functional theory (DFT) in the simulation models of the quantum dots and the quantum layers of silicon with Si=O bond or Si—O—Si bond on surface. The detailed simulating calculations show that the broader splitting gaps of the electronic spin polarization confined at the individual impurity atoms occur in the localized states, which are consistent with experimental results. A physical model is built to explain the opening spin levels effect, in which the opening spin level effect mechanism in the localized states originates from the quantum confinement at doping atom. The opening spin level effect will improve the fidelity of information stored and processed within such a spin qubit.
-
Keywords:
- electronic spin /
- localized state /
- doped nanosilicon /
- valley splitting /
- quantum vibration
[1] Chappert C, Fert A, Nguyen van Dau F 2007 Nat. Mater 6 813
Google Scholar
[2] Lampel G 1968 Phys. Rev. Lett. 20 491
Google Scholar
[3] Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
Google Scholar
[4] Yuasa S, Djayaprawira D D 2017 J. Phys. D: Appl. Phys. 40 R337
[5] Fert A 2008 Rev. Mod. Phys. 80 1517
Google Scholar
[6] Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153
Google Scholar
[7] Datta S, Das B 1990 Appl. Phys. Lett. 56 665
Google Scholar
[8] Flatté M E, Yu Z G, Johnston-Halperin E, Awschalom D D 2003 Appl. Phys. Lett. 82 4740
Google Scholar
[9] Fabian J, Žutić I, Das Sarma S 2004 Appl. Phys. Lett. 84 85
Google Scholar
[10] Sugahara S, Tanaka M 2004 Appl. Phys. Lett. 84 2307
Google Scholar
[11] Appelbaum I, Monsma D J 2007 Appl. Phys. Lett. 90 262501
Google Scholar
[12] Roy A M, Nikonov D E, Saraswat K C 2010 J. Appl. Phys. 107 064504
Google Scholar
[13] Gao Y, Low T, Lundstrom M S, Nikonov D E 2010 J. Appl. Phys. 108 083702
Google Scholar
[14] Huang Z M, Huang W Q, Liu S R, Wu X K 2019 Physica B 553 169
Google Scholar
[15] Flatté M E, Vignale G 2001 Appl. Phys. Lett. 78 1273
Google Scholar
[16] Castelanoa LK, Sham L J 2010 Appl. Phys. Lett. 96 212107
Google Scholar
[17] Rüth M, Gould C, Molenkamp L W 2011 Phys. Rev. B 83 155408
Google Scholar
[18] Tanamoto T, Sugiyama H, Inokuchi T, Marukame T, Ishikawa M, Ikegami M, Saito Y 2011 J.Appl. Phys. 109 07C312
Google Scholar
[19] Dery H, Dalal P, Cywiński L, Sham L J 2007 Nature 447 573
Google Scholar
[20] Behin-Aein B, Datta D, Salahuddin S, Datta S, et al. 2010 Nat. Nanotechnol. 5 266
Google Scholar
[21] Dery H, Song Y, Li P, Žutić I 2011 Appl. Phys. Lett. 99 082502
Google Scholar
[22] Goswami S, Slinker K A, Friesen M, et al. 2007 Nat. Phys. 3 41
Google Scholar
[23] Borselli M G, Ross R S, Kiselev A A, et al. 2011 Appl. Phys. Lett. 98 123118
Google Scholar
[24] Zhang L J, Luo J W, Saraiva A, Koiller B, Zunger A 2013 Nat. Commun. 4 2396
Google Scholar
[25] Elkin E L, Watkins G D 1968 Phys. Rev. 174 881
Google Scholar
[26] Coey J M D, Venkatesan M, Fitzgerald C B 2004 Nature 430 630
Google Scholar
[27] Chambers S A 2006 Surf. Sci. Rep. 61 345
Google Scholar
[28] Osorio-Guillen J, Lany S, Barabash S V, Zunger Z 2006 Phys. Rev. Lett. 96 107203
Google Scholar
[29] Ladd T D, Goldman J R, Yamaguchi F, Yamamoto Y, Abe E, Itoh K M 2002 Phys. Rev. Lett. 89 017901
Google Scholar
[30] Yayon Y, Brar V W, Senapati L, Erwin S C, Crommie M F 2007 Phys. Rev. Lett. 99 067202
Google Scholar
[31] Erwin S C, Himpsel F J 2010 Nat. Commun. 1 58
Google Scholar
[32] Huang W Q, Liu S R, Huang Z M, Wu X K, Qin C J 2017 Sci. Rep. 7 7221
Google Scholar
[33] Huang W Q, Liu S R, Huang Z M, Dong T G, Wang G, Qin C J 2015 Sci. Rep. 5 16682
Google Scholar
-
图 1 样品的TEM成像图和电子衍射图 (a) 纯纳米硅样品I上的TEM图像和电子衍射图花样; (b) 掺杂氧纳米硅样品II上的TEM图像和电子衍射图花样; (c) 伏安特性曲线, 其中红色的是激光(633 nm)照射样品II时的伏安特性曲线
Fig. 1. (a) TEM image of the crystallizing structure in the pure nanosilicon (sample I) and its electron diffraction pattern in the inset; (b) TEM image of the crystallizing structure in the nanosilicon doped with oxygen (sample II) and its electron diffraction pattern in the inset; (c) I-V curves measured on sample II, in which the quantum vibration has been observed under laser irradiation at 633 nm.
图 4 (a) 纯硅量子点结构的模拟计算态密度图; (b) 氧掺杂硅量子点结构的模拟计算态密度图, 插图显示氧掺杂硅量子点的计算模型
Fig. 4. (a) Density of states of the Si quantum dots passivated with Si—H bonds on surface; (b) density of states of the Si quantum dots doped with the Si—O—Si bond on surface with the OSL effect, in which the inset shows the model structure of the Si quantum dots with the Si—O—Si bond.
-
[1] Chappert C, Fert A, Nguyen van Dau F 2007 Nat. Mater 6 813
Google Scholar
[2] Lampel G 1968 Phys. Rev. Lett. 20 491
Google Scholar
[3] Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
Google Scholar
[4] Yuasa S, Djayaprawira D D 2017 J. Phys. D: Appl. Phys. 40 R337
[5] Fert A 2008 Rev. Mod. Phys. 80 1517
Google Scholar
[6] Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153
Google Scholar
[7] Datta S, Das B 1990 Appl. Phys. Lett. 56 665
Google Scholar
[8] Flatté M E, Yu Z G, Johnston-Halperin E, Awschalom D D 2003 Appl. Phys. Lett. 82 4740
Google Scholar
[9] Fabian J, Žutić I, Das Sarma S 2004 Appl. Phys. Lett. 84 85
Google Scholar
[10] Sugahara S, Tanaka M 2004 Appl. Phys. Lett. 84 2307
Google Scholar
[11] Appelbaum I, Monsma D J 2007 Appl. Phys. Lett. 90 262501
Google Scholar
[12] Roy A M, Nikonov D E, Saraswat K C 2010 J. Appl. Phys. 107 064504
Google Scholar
[13] Gao Y, Low T, Lundstrom M S, Nikonov D E 2010 J. Appl. Phys. 108 083702
Google Scholar
[14] Huang Z M, Huang W Q, Liu S R, Wu X K 2019 Physica B 553 169
Google Scholar
[15] Flatté M E, Vignale G 2001 Appl. Phys. Lett. 78 1273
Google Scholar
[16] Castelanoa LK, Sham L J 2010 Appl. Phys. Lett. 96 212107
Google Scholar
[17] Rüth M, Gould C, Molenkamp L W 2011 Phys. Rev. B 83 155408
Google Scholar
[18] Tanamoto T, Sugiyama H, Inokuchi T, Marukame T, Ishikawa M, Ikegami M, Saito Y 2011 J.Appl. Phys. 109 07C312
Google Scholar
[19] Dery H, Dalal P, Cywiński L, Sham L J 2007 Nature 447 573
Google Scholar
[20] Behin-Aein B, Datta D, Salahuddin S, Datta S, et al. 2010 Nat. Nanotechnol. 5 266
Google Scholar
[21] Dery H, Song Y, Li P, Žutić I 2011 Appl. Phys. Lett. 99 082502
Google Scholar
[22] Goswami S, Slinker K A, Friesen M, et al. 2007 Nat. Phys. 3 41
Google Scholar
[23] Borselli M G, Ross R S, Kiselev A A, et al. 2011 Appl. Phys. Lett. 98 123118
Google Scholar
[24] Zhang L J, Luo J W, Saraiva A, Koiller B, Zunger A 2013 Nat. Commun. 4 2396
Google Scholar
[25] Elkin E L, Watkins G D 1968 Phys. Rev. 174 881
Google Scholar
[26] Coey J M D, Venkatesan M, Fitzgerald C B 2004 Nature 430 630
Google Scholar
[27] Chambers S A 2006 Surf. Sci. Rep. 61 345
Google Scholar
[28] Osorio-Guillen J, Lany S, Barabash S V, Zunger Z 2006 Phys. Rev. Lett. 96 107203
Google Scholar
[29] Ladd T D, Goldman J R, Yamaguchi F, Yamamoto Y, Abe E, Itoh K M 2002 Phys. Rev. Lett. 89 017901
Google Scholar
[30] Yayon Y, Brar V W, Senapati L, Erwin S C, Crommie M F 2007 Phys. Rev. Lett. 99 067202
Google Scholar
[31] Erwin S C, Himpsel F J 2010 Nat. Commun. 1 58
Google Scholar
[32] Huang W Q, Liu S R, Huang Z M, Wu X K, Qin C J 2017 Sci. Rep. 7 7221
Google Scholar
[33] Huang W Q, Liu S R, Huang Z M, Dong T G, Wang G, Qin C J 2015 Sci. Rep. 5 16682
Google Scholar
计量
- 文章访问数: 7360
- PDF下载量: 64
- 被引次数: 0