搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于香蕉形液晶分子自组装的纳米螺旋丝有机凝胶及其流变特性

王行政 杨晨静 蔡历恒 陈东

引用本文:
Citation:

基于香蕉形液晶分子自组装的纳米螺旋丝有机凝胶及其流变特性

王行政, 杨晨静, 蔡历恒, 陈东

The rheology property of organogels based on 3D helical nanofilament bnetworks self-assembled by bent-core liquid crystals

Wang Xing-Zheng, Yang Chen-Jing, Cai Li-Heng, Chen Dong
PDF
HTML
导出引用
  • 在香蕉形液晶分子B4相态中, 非手性香蕉形液晶分子自组装形成层状结构, 分子在层内倾斜, 形成层手性和自发极化, 并且造成层内不匹配, 最终形成纳米螺旋丝. 本文设计了NOBOW/十六烷混合体系, 在高温时, 香蕉形液晶分子溶解于十六烷, 在低温时, 香蕉形液晶分子自组装形成纳米螺旋丝, 并最终形成三维网络, 变成有机凝胶. 为深入理解纳米螺旋丝有机凝胶的特性, 拓展其在软物质领域的应用, 本文通过流变实验对该有机凝胶的黏弹性质进行了系统研究. 实验表明纳米螺旋丝有机凝胶与传统凝胶不同, 纳米螺旋丝有机凝胶可以随温度变化形成凝胶-流体的可逆变化, 并且通过测量NOBOW/十六烷混合体系在不同液晶分子浓度、温度、应变大小和应变速率下的流变特征, 揭示了该有机凝胶的流变特性与纳米螺旋丝的性质密切相关.
    In the B4 phase of bent-core liquid crystals, smectic layers of tilted achiral bent-core molecules are chiral and polar, which, driven by intra-layer structural mismatch, eventually twist into helical nanofilaments. We design a NOBOW/hexadecane organogel system, which is different from traditional organogel system, and the studied organogels show reversible gel-liquid transitions under temperature cycles. At high temperature, the NOBOW molecules dissolve in hexadecane and the storage modulus and viscous modulus show typical liquid characteristics. At low temperature, the mobility of NOBOW molecules decreases and the storage modulus of the organogels increases as the temperature decreases. We conduct a rheology experiment to systematically investigate the viscoelasticity of the organogel to understand the property of the organogel and develop the application in soft matter. The viscoelastic studies of the organogels reveal that the helical nanofilaments are internally strained and their 3D networks are relatively stiff, which provides an in-depth insight into the properties of the organogels and paves the way for their applications in soft matter.
      通信作者: 蔡历恒, liheng.cai@virginia.edu ; 陈东, chen_dong@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11704331, 21878258)和稀土资源利用国家重点实验室开放课题基金(批准号: RERU2019008)资助的课题
      Corresponding author: Cai Li-Heng, liheng.cai@virginia.edu ; Chen Dong, chen_dong@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704331, 21878258) and the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization, China (Grant No. RERU2019008)
    [1]

    乔小溪, 张向军, 田煜, 孟永钢, 温诗铸 2013 62 176101Google Scholar

    Qiao X X, Zhang X J, Tian Y, Meng Y G, Wen S Z 2013 Acta Phys. Sin. 62 176101Google Scholar

    [2]

    Shen Z X, Tang M J, Chen P, Zhou S H, Ge S J, Duan W, Wei T, Liang X, Hu W, Lu Y Q 2020 Adv. Opt. Mater. 8 1902124Google Scholar

    [3]

    Qin J, Wang X Q, Yuan C, Zheng Z, Shen D 2019 Liq. Cryst. 47 255Google Scholar

    [4]

    Liu L, Wang M, Guo L X, Sun Y, Zhang X Q, Lin B P, Yang H 2018 Macromolecules 51 4516Google Scholar

    [5]

    Wang L, Chen D, Gutierrez Cuevas K G, Bisoyi H K, Fan J, Zola R S, Li G, Urbas A M, Bunning T J, Weitz D A 2017 Mater. Horiz. 4 1190Google Scholar

    [6]

    Ye F F, Mukhopadhyay R, Stenull O, Lubensky T C 2007 Phys. Rev. Lett. 98 147801.1Google Scholar

    [7]

    Ye F F, Lubensky T C 2009 JPCB 113 3853Google Scholar

    [8]

    Hough L E, Jung H T, Kruerke D, Heberling M S, Nakata M, Jones C D, Chen D, Link D R, Zasadzinski J, Heppke G 2009 Science 325 456Google Scholar

    [9]

    Dierking I 2010 Angew. Chem. Int. Ed. 49 29Google Scholar

    [10]

    Sekine T, Niori T, Sone M, Watanabe J, Takezoe H 1997 Jpn. J. Appl. Phys. 36 6455Google Scholar

    [11]

    Chen D, Madennan J E, Shao R, Dong K Y, Wang H, Korblova E, Walba D M, Glaser M A, Clark N A 2011 J. Am. Chem. Soc. 133 12656Google Scholar

    [12]

    Coleman D A, Fernsler J, Chattham N, Nakata M, Takanishi Y, Körblova E, Link D R, Shao R F, Jang W G, Maclennan J E 2003 Science 301 1204Google Scholar

    [13]

    Thisayukta J, Takezoe H, Watanabe J 2001 Jpn. J. Appl. Phys. 40 3277Google Scholar

    [14]

    Tschierske C, Dantlgraber G 2003 Pramana 61 455Google Scholar

    [15]

    Kondepudi D K, Kaufman R J, Singh N 1990 Science 250 975Google Scholar

    [16]

    Zep A, Salamonczyk M, Vaupotič N, Pociecha D, Gorecka E 2013 Chem. Commun. 49 3119Google Scholar

    [17]

    Chen D, Zhu C, Wang H, Maclennan J E, Glaser M A, Korblova E, Walba D M, Rego J A, Soto-Bustamante E A, Clark N A 2013 Soft Matter 9 462Google Scholar

    [18]

    Gleeson H F, Liu H, Kaur S, Srigengan S, Görtz V, Mandle R, Lydon J E 2018 Soft Matter 14 9159Google Scholar

    [19]

    Matraszek J, Topnani N, Vaupotic N, Takezoe H, Mieczkowski J, Pociecha D, Gorecka E 2015 Angew Chem. Int. Ed. Engl. 128 3529

    [20]

    Shen Z, Jiang Y, Wang T, Liu M 2015 J. Am. Chem. Soc. 137 16109Google Scholar

    [21]

    Shen Z, Wang T, Shi L, Tang Z, Liu M 2015 Chem. Sci. 6 4267Google Scholar

    [22]

    Zheludev N I 2010 Science 328 582Google Scholar

    [23]

    Chen D, Tuchband M R, Horanyi B, Korblova E, Walba D M, Glaser M A, Maclennan J E, Clark N A 2015 Nat. Commun. 6 1

    [24]

    刘立伟, 王作维, 周鲁卫, 王冶金, 高广君, 刘晓君 2000 49 1887Google Scholar

    Liu L W, Wang Z W, Zhou L W, Wang Z J, Gao G J, Liu X J 2000 Acta Phys. Sin. 49 1887Google Scholar

    [25]

    Macosko C W 1994 RHEOLOGY Principles, Measurements and Applications (Canada: Wiley-VCH) pp65–106

    [26]

    Mason T G, Weitz D A 1995 Phys. Rev. Lett. 74 1250Google Scholar

    [27]

    Chen D, Zhu C, Shoemaker R K, Korblova E, Walba D M, Glaser M A, Maclennan J E, Clark N A 2010 Langmuir 26 15541Google Scholar

  • 图 1  香蕉形液晶分子的自组装结构 (a) NOBOW和 (b)十六烷的化学结构; (c) 香蕉形液晶分子的指向矢n沿长轴方向, 极化p沿弓形方向; (d) 非手性香蕉形液晶分子自组装形成层状结构, 分子在层内倾斜, 形成层手性和极化, 极化方向p同时垂直于指向矢n和层法线z, 即垂直于指向矢n和层法线z所在的平面; (e) 香蕉形液晶分子上下两臂的倾斜方向相互垂直, 对应的扩张方向也相互垂直, 造成层内不匹配. 为了消除这种层内不匹配, 香蕉形液晶分子的层状结构会自发形成马鞍状弹性形变. 当马鞍状弹性形变足够大时, 液晶分子可以自组装形成 (f)双连续相或 (g)纳米螺旋丝相

    Fig. 1.  Self-assembly of bent-core liquid crystal. Chemical structures of (a) NOBOW and (b) hexadecane molecules; (c) the director, n, which is along the molecular long axis, and the polarization, p, which is along the bow direction; (d) smectic layers of tilted bent-core molecules. The molecules are tilted from the layer normal z, and the macroscopic polarization p, is orthogonal to both n and z; (e) the tilt directions of the top and bottom molecular arms of bent-core liquid crystals are essentially orthogonal to each other. If each molecular arm is regarded as an elastic slab, the two elastic slabs dilate along their local molecular tilt directions, which are orthogonal to each other, thus resulting in internal structural mismatch. The internal structural mismatch could be released by the formation of saddle-splay deformations; (f) bicontinuous smectic layer of the dark conglomerate (DC) phase, in which smectic layers organize into disordered focal conics; (g) helical nanofilaments of the B4 phase, in which smectic layers of finite width form uniformly twisted ribbons.

    图 2  基于香蕉形液晶分子自组装形成纳米螺旋丝网络的有机凝胶 (a)在120 ℃高温下, 1 wt.% NOBOW香蕉形液晶分子可以溶解于十六烷, 体系呈透明流体; 在室温25 ℃下, 香蕉形液晶分子自组装形成纳米螺旋丝网络, 体系变成有机凝胶. 该流体-凝胶转变可通过加热和冷却实现可逆变化; (b) 有机凝胶中纳米螺旋丝网络的速冻断层电子显微镜(FFTEM)图像; (c) 纳米螺旋丝的透射电子显微镜(TEM)图像, 插图展示了纳米螺旋丝的应力分布, 应力从螺旋轴中心往两边逐渐增加, 对应颜色逐渐加深

    Fig. 2.  Organogels formed by self-assembled 3D helical nanofilament networks of bent-core liquid crystals: (a) At 25 ℃, bent-core liquid crystal molecules self-assemble into helical nanofilament networks and the 1 wt.% NOBOW/hexadecane mixture forms organogels. At 120 ℃, NOBOW dissolves in the hexadecane solvent and the system appears as transparent fluid, showing reversible gel-sol transitions upon heating and cooling; (b) freeze-fracture transmission electron microscopy (FFTEM) image of helical nanofilament networks in the organogels; (c) transmission electron microscopy (TEM) image of individual helical nano-filaments. The inset shows the distribution of internal stress in the helical nanofilaments. The internal stress gradually increases from the helical axis towards the edges, accompanied by the color increase.

    图 3  NOBOW/十六烷混合体系储能模量(G' )和损耗模量(G'' )随温度变化的关系 (a)当NOBOW的质量分数为0.25 wt.%时, 体系不能形成凝胶, 损耗模量略大于储能模量; (b), (c)当NOBOW的质量分数分别为0.5 wt.%和1 wt.%且温度分别低于99和107 ℃时, 香蕉形液晶分子自组装形成纳米螺旋丝网络, 体系储能模量显著升高. 0.5 wt.%体系储能模量增加的速率为10.3 Pa/℃, 而1 wt.%体系储能模量增加的速率为14.2 Pa/℃. 实验中, 应变保持0.5%, 应变速率保持1 Hz

    Fig. 3.  Temperature sweeps of the elastic (G', solid symbols) and viscous moduli (G'', open symbols) of NOBOW/ hexadecane mixtures: (a) 0.25 wt.% NOBOW/hexadecane mixture could not form organogels and its G'' is larger than G'; (b), (c) 0.5 wt.% and 1 wt.% NOBOW/hexadecane mixtures could self-assemble into helical nanofilament networks, forming organogels. The increase rate of the elastic modulus of 0.5 wt.% NOBOW/hexadecane is 10.3 Pa/℃ and that of 1 wt.% NOBOW/hexadecane is 14.2 Pa/℃. The measurements are taken at a fixed strain of 0.5% and a fixed strain rate of 1 Hz.

    图 4  不同温度下, NOBOW/十六烷混合体系储能模量(G' )和损耗模量(G'' )随应变大小变化的规律 (a) 0.25 wt.%, (b) 0.5 wt.%和(c) 1 wt.% NOBOW/十六烷混合体系储能模量(G' )和损耗模量(G'' )分别在20, 60和90 ℃随应变大小变化的关系. 实验中, 应变速率保持1 Hz

    Fig. 4.  Strain sweeps of the elastic (G', solid symbols) and viscous moduli (G'', open symbols) of (a) 0.25 wt.%, (b) 0.5 wt.% and (c) 1 wt.% NOBOW/hexadecane mixtures measured at different temperatures of 20 ℃, 60 ℃ and 90 ℃. The mea-surements are taken at a fixed strain rate of 1 Hz.

    图 5  不同温度下, NOBOW/十六烷混合体系储能模量(G' )和损耗模量(G'' )随应变速率变化的规律 (a) 0.25 wt.%, (b) 0.5 wt.%和(c) 1 wt.% NOBOW/十六烷混合体系储能模量(G' )和损耗模量(G'' )分别在20, 90, 100和120 ℃随应变速率变化的关系. 实验中, 应变大小保持0.5%

    Fig. 5.  Strain rate sweeps of the elastic (G', solid symbols) and viscous moduli (G'', open symbols) of (a) 0.25 wt.%, (b) 0.5 wt.% and (c) 1 wt.% NOBOW/hexadecane mixtures measured at different temperatures of 20, 90, 100 and 120 ℃. The measurements are taken at a fixed strain of 0.5%.

    Baidu
  • [1]

    乔小溪, 张向军, 田煜, 孟永钢, 温诗铸 2013 62 176101Google Scholar

    Qiao X X, Zhang X J, Tian Y, Meng Y G, Wen S Z 2013 Acta Phys. Sin. 62 176101Google Scholar

    [2]

    Shen Z X, Tang M J, Chen P, Zhou S H, Ge S J, Duan W, Wei T, Liang X, Hu W, Lu Y Q 2020 Adv. Opt. Mater. 8 1902124Google Scholar

    [3]

    Qin J, Wang X Q, Yuan C, Zheng Z, Shen D 2019 Liq. Cryst. 47 255Google Scholar

    [4]

    Liu L, Wang M, Guo L X, Sun Y, Zhang X Q, Lin B P, Yang H 2018 Macromolecules 51 4516Google Scholar

    [5]

    Wang L, Chen D, Gutierrez Cuevas K G, Bisoyi H K, Fan J, Zola R S, Li G, Urbas A M, Bunning T J, Weitz D A 2017 Mater. Horiz. 4 1190Google Scholar

    [6]

    Ye F F, Mukhopadhyay R, Stenull O, Lubensky T C 2007 Phys. Rev. Lett. 98 147801.1Google Scholar

    [7]

    Ye F F, Lubensky T C 2009 JPCB 113 3853Google Scholar

    [8]

    Hough L E, Jung H T, Kruerke D, Heberling M S, Nakata M, Jones C D, Chen D, Link D R, Zasadzinski J, Heppke G 2009 Science 325 456Google Scholar

    [9]

    Dierking I 2010 Angew. Chem. Int. Ed. 49 29Google Scholar

    [10]

    Sekine T, Niori T, Sone M, Watanabe J, Takezoe H 1997 Jpn. J. Appl. Phys. 36 6455Google Scholar

    [11]

    Chen D, Madennan J E, Shao R, Dong K Y, Wang H, Korblova E, Walba D M, Glaser M A, Clark N A 2011 J. Am. Chem. Soc. 133 12656Google Scholar

    [12]

    Coleman D A, Fernsler J, Chattham N, Nakata M, Takanishi Y, Körblova E, Link D R, Shao R F, Jang W G, Maclennan J E 2003 Science 301 1204Google Scholar

    [13]

    Thisayukta J, Takezoe H, Watanabe J 2001 Jpn. J. Appl. Phys. 40 3277Google Scholar

    [14]

    Tschierske C, Dantlgraber G 2003 Pramana 61 455Google Scholar

    [15]

    Kondepudi D K, Kaufman R J, Singh N 1990 Science 250 975Google Scholar

    [16]

    Zep A, Salamonczyk M, Vaupotič N, Pociecha D, Gorecka E 2013 Chem. Commun. 49 3119Google Scholar

    [17]

    Chen D, Zhu C, Wang H, Maclennan J E, Glaser M A, Korblova E, Walba D M, Rego J A, Soto-Bustamante E A, Clark N A 2013 Soft Matter 9 462Google Scholar

    [18]

    Gleeson H F, Liu H, Kaur S, Srigengan S, Görtz V, Mandle R, Lydon J E 2018 Soft Matter 14 9159Google Scholar

    [19]

    Matraszek J, Topnani N, Vaupotic N, Takezoe H, Mieczkowski J, Pociecha D, Gorecka E 2015 Angew Chem. Int. Ed. Engl. 128 3529

    [20]

    Shen Z, Jiang Y, Wang T, Liu M 2015 J. Am. Chem. Soc. 137 16109Google Scholar

    [21]

    Shen Z, Wang T, Shi L, Tang Z, Liu M 2015 Chem. Sci. 6 4267Google Scholar

    [22]

    Zheludev N I 2010 Science 328 582Google Scholar

    [23]

    Chen D, Tuchband M R, Horanyi B, Korblova E, Walba D M, Glaser M A, Maclennan J E, Clark N A 2015 Nat. Commun. 6 1

    [24]

    刘立伟, 王作维, 周鲁卫, 王冶金, 高广君, 刘晓君 2000 49 1887Google Scholar

    Liu L W, Wang Z W, Zhou L W, Wang Z J, Gao G J, Liu X J 2000 Acta Phys. Sin. 49 1887Google Scholar

    [25]

    Macosko C W 1994 RHEOLOGY Principles, Measurements and Applications (Canada: Wiley-VCH) pp65–106

    [26]

    Mason T G, Weitz D A 1995 Phys. Rev. Lett. 74 1250Google Scholar

    [27]

    Chen D, Zhu C, Shoemaker R K, Korblova E, Walba D M, Glaser M A, Maclennan J E, Clark N A 2010 Langmuir 26 15541Google Scholar

  • [1] 张婧祺, 郝奇, 吕国建, 熊必金, 乔吉超. 基于微观结构非均匀性理解非晶态聚苯乙烯的应力松弛行为.  , 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [2] 李佳芮, 乐陶然, 尉昊赟, 李岩. 基于脉冲受激布里渊散射光谱的非接触式黏弹性测量.  , 2024, 73(12): 127801. doi: 10.7498/aps.73.20231974
    [3] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间.  , 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [4] 侯艳洁, 胡春光, 张雷, 陈雪娇, 傅星, 胡小唐. 纳米有机薄膜有效导电层的反射光谱法研究.  , 2016, 65(20): 200201. doi: 10.7498/aps.65.200201
    [5] 许福, 李科锋, 邓旭辉, 张平, 龙志林. 基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究.  , 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [6] 廖光开, 龙志林, 许福, 刘为, 张志洋, 杨妙. 基于分数阶流变模型的铁基块体非晶合金黏弹性行为研究.  , 2015, 64(13): 136101. doi: 10.7498/aps.64.136101
    [7] 戴卿, 项楠, 程洁, 倪中华. 圆截面直流道中微粒黏弹性聚焦机理研究.  , 2015, 64(15): 154703. doi: 10.7498/aps.64.154703
    [8] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟.  , 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [9] 王羽, 欧阳洁, 杨斌鑫. 分数阶Oldroyd-B黏弹性Poiseuille流的Laplace数值反演分析.  , 2010, 59(10): 6757-6763. doi: 10.7498/aps.59.6757
    [10] 熊毅, 张向军, 张晓昊, 温诗铸. 电场作用下5CB液晶分子的近壁面层黏弹性的QCM研究.  , 2010, 59(11): 7998-8004. doi: 10.7498/aps.59.7998
    [11] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型.  , 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [12] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟.  , 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [13] 赵宏刚, 刘耀宗, 温激鸿, 郁殿龙, 温熙森. 含有周期球腔的黏弹性覆盖层消声性能分析.  , 2007, 56(8): 4700-4707. doi: 10.7498/aps.56.4700
    [14] 王理, 黎坚, 杨亚江. 水分子凝胶中有机凝胶因子聚集体的分形结构研究.  , 2004, 53(1): 160-164. doi: 10.7498/aps.53.160
    [15] 杜启振. 各向异性黏弹性介质伪谱法波场模拟.  , 2004, 53(12): 4428-4434. doi: 10.7498/aps.53.4428
    [16] 杜启振, 杨慧珠. 裂缝性地层黏弹性地震多波波动方程.  , 2004, 53(8): 2801-2806. doi: 10.7498/aps.53.2801
    [17] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟.  , 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [18] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究.  , 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [19] 时东霞, 巴德纯, 庞世瑾, 宋延林, 高鸿钧. 有机纳米信息存储中的结构转变.  , 2001, 50(5): 990-993. doi: 10.7498/aps.50.990
    [20] 王晓平, 周 翔, 何 钧, 廖良生, 吴自勤. 有机薄膜电致发光失效过程的多重分形谱研究.  , 1999, 48(10): 1911-1916. doi: 10.7498/aps.48.1911
计量
  • 文章访问数:  9089
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-04
  • 修回日期:  2020-03-22
  • 刊出日期:  2020-04-20

/

返回文章
返回
Baidu
map