-
为了满足高能物理和核物理领域在探究一些超快物理事件时, 对兼顾高时间和高空间分辨的X射线闪烁转换屏的迫切需求, 本文利用磁控溅射和水热反应法制备了ZnO:In纳米棒阵列X射线闪烁转换屏, 并对其进行氢气氛下的等离子处理优化其闪烁发光性能. X射线激发发射谱显示ZnO:In纳米棒阵列具有395 nm的紫外发光和450—750 nm的可见发光两个发光峰, 同时表明氢气氛等离子体处理可显著增强ZnO:In纳米棒阵列的紫外发光, 抑制其可见发光. 发光衰减时间测量表明, ZnO:In纳米棒阵列紫外发光衰减时间在亚纳秒级, 其可见发光衰减时间在纳秒级, 两者均可满足高时间分辨的X射线探测需求. 在上海同步辐射光源的X射线空间分辨率测试表明, 在能量为20 keV的X射线光束辐照下, 厚度为12 μm的ZnO:In纳米棒阵列作为X射线闪烁转换屏可达到1.5 μm的系统空间分辨率. 本研究表明利用ZnO:In纳米棒阵列作为X射线闪烁转换屏是实现兼顾高时间和高空间分辨的X射线探测与成像的一种可行方案.
-
关键词:
- X射线闪烁转换屏 /
- ZnO:In纳米棒阵列 /
- 超快衰减时间 /
- 高空间分辨率
X-ray scintillation screens as the core component of X-ray imaging detectors have widespread applications in the medical imaging, security inspection, high energy physics, radiochemistry, and so on. For a long time, the development of X-ray scintillation screen mainly focuses on improving the light yield in order to enhance its detection efficiency. However, a novel tendency has recently emerged for ultrafast time performance of the X-ray imaging detector. The indium doping zinc oxide (ZnO:In) with high radiation hardness, higher light yield(>10000 photons/MeV) and subnanosecond decay time is a promising scintillation material for ultrafast detections. In order to satisfy the requirements of X-ray scintillation screens with ultrafast and high-spatial-resolution in the existing and upcoming high energy physics experiments, the ZnO:In nanorod arrays have been prepared on a 100-nm-thick ZnO-seeded substrate by hydrothermal reaction method and then treated by hydrogen plasma in present work. The results of SEM demonstrate the average diameter and length of the ZnO:In nanorods are about 0.5 and 12 μm, respectively. The XRD shows the ZnO:In nanorods are highly aligned perpendicular to the substrate along c-axis direction. The X-ray excited luminescence spectra show that two luminescence bands are observed, i.e. an ultraviolet emission peak located at about 395 nm and a visible emission band at 450–750 nm. It is particularly important to point out that hydrogen plasma treatment can enhance the ultraviolet emission of ZnO:In nanorod arrays and suppress its visible emission. The reason is attributed to the formation of shallow donors through hydrogen entering the ZnO and the combination of VO and Oi. In addition, the fluorescence decay times of the ultraviolet and visible emissions for the ZnO:In nanorod arrays are subnanosecond and nanosecond, respectively, satisfying the demand of the fast X-ray imaging. The spatial resolution of ZnO:In nanorod arrays has been characterized in X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility. Under excitation of the X-ray beam with the energy of 20 keV, a system spatial resolution of 1.5 μm could be achieved by using an 12 μm thickness ZnO:In nanorod arrays as the scintillation screen, which is exceeded the highest level had ever been reported on ZnO:In nanorod arrays scintillation screen. In conclusion, this present work shows that it is a feasible solution for X-ray detection and imaging with high temporal and spatial resolution by using ZnO:In nanorod arrays as the X-ray scintillation screen.-
Keywords:
- X-ray scintillation screen /
- ZnO:In nanorod arrays /
- ultrafast decay time /
- high spatial resolution
[1] Yanagida T 2018 Proc. Jpn. Acad., Ser. B 94 75Google Scholar
[2] Dujardin C, Auffray E, Bourret-Courchesne E, Dorenbos P, Lecoq P, Nikl M, Vasil'ev A N, Yoshikawa A, Zhu R Y 2018 IEEE Trans. Nucl. Sci. 65 1977Google Scholar
[3] Nikl M 2006 Meas. Sci. Technol. 17 R37Google Scholar
[4] Barnes, C W, Fernández, J C, Hartsfield, T M, Sandberg, R L, Sheffield, R L, Tapia, J P, Wang, Z 2018 AIP Conf. Proc. 1979 160003Google Scholar
[5] Turk G, Reverdin C, Gontier D, Darbon S, Dujardin C, Ledoux G, Hamel M, Simic V, Normand S 2010 Rev. Sci. Instrum. 81 10E509Google Scholar
[6] Atanov N, Baranov V, Budagov J, Cervelli F, Colao F, Cordelli M, Corradi G, Davydov Y I, Falco S D, Diociaiuti E, Donati S, Donghia R, Echenard B, Giovannella S, Glagolev V, Grancagnolo F, Happacher F, Hitlin D G, Martini M, Miscetti S, Miyashita T, Morescalchi L, Murat P, Pedreschi E, Pezzullo G, Porter F, Raffaelli F, Ricci M, Saputi A, Sarra I, Spinella F, Tassielli G, Tereshchenko V, Usubov Z, Zhu R Y 2018 J. Instrum. 13 C02037Google Scholar
[7] Zhu R Y 2019 J. Phys. Conf. Ser. 1162 012022Google Scholar
[8] Hu C, Zhang L, Zhu RY, Chen A, Wang Z, Ying L, Yu Z 2018 IEEE Trans. Nucl. Sci. 65 2097Google Scholar
[9] Simpson P J, Tjossem R, Hunt A W, Lynn K G, Munné V 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 505 82Google Scholar
[10] Chen L, Ruan J, Xu M, He S, Hu J, Zhang Z, Liu J, Ouyang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 933 71Google Scholar
[11] Grigorjeva L, Grube J, Bite I, Zolotarjovs A, Smits K, Millers D, Rodnyi P, Chernenko K 2019 Radiat. Meas. 123 69Google Scholar
[12] 邱志澈, 顾牡, 刘小林, 刘波, 黄世明, 倪晨 2016 光谱学与光谱分析 36 336Google Scholar
Qiu Z C, Gu M, Liu X L, Liu B, Huang S M, Ni C 2016 Spectrosc. Spect. Anal. 36 336Google Scholar
[13] Liu S, Gu M, Chen H, Sun Z, Liu X, Liu B, Huang S, Zhang J 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 903 18Google Scholar
[14] Li Q, Liu X, Gu M, Li F, Zhang J, Wu Q, Huang S, Liu S 2018 Appl. Surf. Sci. 433 815Google Scholar
[15] Kobayashi M, Komori J, Shimidzu K, Izaki M, Uesugi K, Takeuchi A, Suzuki Y 2015 Appl. Phys. Lett. 106 081909Google Scholar
[16] Izaki M, Kobayashi M, Shinagawa T, Koyama T, Uesugi K, Takeuchi A 2017 Phys. Status Solidi A 214 1700285Google Scholar
[17] Li Q, Hao S, An R, Wang M, Sun Z, Wu Q, Gu M, Zhao J, Liu X, Zhang Z 2019 Appl. Surf. Sci. 493 1299Google Scholar
[18] 倪晨, 顾牡, 王迪, 曹顿华, 刘小林, 黄世明 2009 光谱学与光谱分析 29 2291Google Scholar
Ni C, Gu M, Wang D, Cao D H, Liu X L, Huang S M 2009 Spectrosc. Spect. Anal. 29 2291Google Scholar
[19] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301Google Scholar
[20] Li Q, Liu X, Gu M, Huang S, Ni C, Liu B, Hu Y, Sun S, Zhang Z 2016 IEEE Trans. Nucl. Sci. 63 471Google Scholar
[21] Li Q, Liu X, Gu M, Huang S, Zhang J, Ni C, Liu B, Hu Y, Wu Q, Zhao S 2016 Superlattices Microstruct. 98 351Google Scholar
[22] Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G 2002 Phys. Rev. Lett. 88 045504Google Scholar
[23] Lavrov E V, Herklotz F, Weber J 2009 Phys. Rev. B 79 165210Google Scholar
[24] Kano M, Wakamiya A, Yamanoi K, Sakai K, Takeda K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Fukuda T 2012 IEEE Trans. Nucl. Sci. 59 2290Google Scholar
[25] Yamanoi K, Sakai K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Kano M, Wakamiya A, Fukuda T, Nagasono M, Togashi T, Matsubara S, Tono K, Higashiya A, Yabashi M, Kimura H, Ohashi H, Ishikawa T 2012 IEEE Trans. Nucl. Sci. 59 2298Google Scholar
[26] 郭智敏, 倪培君 2010 兵器材料科学与工程 33 113Google Scholar
Guo Z M, Ni P J, 2010 Ordnance Mater. Sci. Eng. 33 113Google Scholar
[27] Chen H, Gu M, Sun Z, Liu X, Liu B, Zhang J, Huang S, Ni C 2019 Opt. Express 27 14871Google Scholar
[28] Sowa K M, Last A, Korecki P 2017 Sci. Rep. 7 44944Google Scholar
[29] Samei E, Flynn M J, Reimann D A 1998 Med. Phys. 25 102Google Scholar
[30] Michail C, Valais I, Martini N, Koukou V, Kalyvas N, Bakas A, Kandarakis I, Fountos G 2016 Radiat. Meas. 94 8Google Scholar
-
图 7 (a) JIMA RT RC-02型微米分辨率板实物图, 内部结构图示意图和微米分辨图案; 基于ZnO:In纳米棒阵列做闪烁转换屏的(b) 3 μm和(c) 1.5 μm的X射线成像图
Fig. 7. (a) Physical, Schematic diagram of internal structure and Micron-resolved pattern of JIMA RT-02 micro-resolution plates; the X-ray images of (b) 3 μm and (c) 1.5 μm basedonZnO:In nanorod arrays as the scintillation screen.
-
[1] Yanagida T 2018 Proc. Jpn. Acad., Ser. B 94 75Google Scholar
[2] Dujardin C, Auffray E, Bourret-Courchesne E, Dorenbos P, Lecoq P, Nikl M, Vasil'ev A N, Yoshikawa A, Zhu R Y 2018 IEEE Trans. Nucl. Sci. 65 1977Google Scholar
[3] Nikl M 2006 Meas. Sci. Technol. 17 R37Google Scholar
[4] Barnes, C W, Fernández, J C, Hartsfield, T M, Sandberg, R L, Sheffield, R L, Tapia, J P, Wang, Z 2018 AIP Conf. Proc. 1979 160003Google Scholar
[5] Turk G, Reverdin C, Gontier D, Darbon S, Dujardin C, Ledoux G, Hamel M, Simic V, Normand S 2010 Rev. Sci. Instrum. 81 10E509Google Scholar
[6] Atanov N, Baranov V, Budagov J, Cervelli F, Colao F, Cordelli M, Corradi G, Davydov Y I, Falco S D, Diociaiuti E, Donati S, Donghia R, Echenard B, Giovannella S, Glagolev V, Grancagnolo F, Happacher F, Hitlin D G, Martini M, Miscetti S, Miyashita T, Morescalchi L, Murat P, Pedreschi E, Pezzullo G, Porter F, Raffaelli F, Ricci M, Saputi A, Sarra I, Spinella F, Tassielli G, Tereshchenko V, Usubov Z, Zhu R Y 2018 J. Instrum. 13 C02037Google Scholar
[7] Zhu R Y 2019 J. Phys. Conf. Ser. 1162 012022Google Scholar
[8] Hu C, Zhang L, Zhu RY, Chen A, Wang Z, Ying L, Yu Z 2018 IEEE Trans. Nucl. Sci. 65 2097Google Scholar
[9] Simpson P J, Tjossem R, Hunt A W, Lynn K G, Munné V 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 505 82Google Scholar
[10] Chen L, Ruan J, Xu M, He S, Hu J, Zhang Z, Liu J, Ouyang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 933 71Google Scholar
[11] Grigorjeva L, Grube J, Bite I, Zolotarjovs A, Smits K, Millers D, Rodnyi P, Chernenko K 2019 Radiat. Meas. 123 69Google Scholar
[12] 邱志澈, 顾牡, 刘小林, 刘波, 黄世明, 倪晨 2016 光谱学与光谱分析 36 336Google Scholar
Qiu Z C, Gu M, Liu X L, Liu B, Huang S M, Ni C 2016 Spectrosc. Spect. Anal. 36 336Google Scholar
[13] Liu S, Gu M, Chen H, Sun Z, Liu X, Liu B, Huang S, Zhang J 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 903 18Google Scholar
[14] Li Q, Liu X, Gu M, Li F, Zhang J, Wu Q, Huang S, Liu S 2018 Appl. Surf. Sci. 433 815Google Scholar
[15] Kobayashi M, Komori J, Shimidzu K, Izaki M, Uesugi K, Takeuchi A, Suzuki Y 2015 Appl. Phys. Lett. 106 081909Google Scholar
[16] Izaki M, Kobayashi M, Shinagawa T, Koyama T, Uesugi K, Takeuchi A 2017 Phys. Status Solidi A 214 1700285Google Scholar
[17] Li Q, Hao S, An R, Wang M, Sun Z, Wu Q, Gu M, Zhao J, Liu X, Zhang Z 2019 Appl. Surf. Sci. 493 1299Google Scholar
[18] 倪晨, 顾牡, 王迪, 曹顿华, 刘小林, 黄世明 2009 光谱学与光谱分析 29 2291Google Scholar
Ni C, Gu M, Wang D, Cao D H, Liu X L, Huang S M 2009 Spectrosc. Spect. Anal. 29 2291Google Scholar
[19] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301Google Scholar
[20] Li Q, Liu X, Gu M, Huang S, Ni C, Liu B, Hu Y, Sun S, Zhang Z 2016 IEEE Trans. Nucl. Sci. 63 471Google Scholar
[21] Li Q, Liu X, Gu M, Huang S, Zhang J, Ni C, Liu B, Hu Y, Wu Q, Zhao S 2016 Superlattices Microstruct. 98 351Google Scholar
[22] Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G 2002 Phys. Rev. Lett. 88 045504Google Scholar
[23] Lavrov E V, Herklotz F, Weber J 2009 Phys. Rev. B 79 165210Google Scholar
[24] Kano M, Wakamiya A, Yamanoi K, Sakai K, Takeda K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Fukuda T 2012 IEEE Trans. Nucl. Sci. 59 2290Google Scholar
[25] Yamanoi K, Sakai K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Kano M, Wakamiya A, Fukuda T, Nagasono M, Togashi T, Matsubara S, Tono K, Higashiya A, Yabashi M, Kimura H, Ohashi H, Ishikawa T 2012 IEEE Trans. Nucl. Sci. 59 2298Google Scholar
[26] 郭智敏, 倪培君 2010 兵器材料科学与工程 33 113Google Scholar
Guo Z M, Ni P J, 2010 Ordnance Mater. Sci. Eng. 33 113Google Scholar
[27] Chen H, Gu M, Sun Z, Liu X, Liu B, Zhang J, Huang S, Ni C 2019 Opt. Express 27 14871Google Scholar
[28] Sowa K M, Last A, Korecki P 2017 Sci. Rep. 7 44944Google Scholar
[29] Samei E, Flynn M J, Reimann D A 1998 Med. Phys. 25 102Google Scholar
[30] Michail C, Valais I, Martini N, Koukou V, Kalyvas N, Bakas A, Kandarakis I, Fountos G 2016 Radiat. Meas. 94 8Google Scholar
计量
- 文章访问数: 9861
- PDF下载量: 269
- 被引次数: 0