搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含双曲超构材料的复合周期结构的带隙调控及应用

吴丰 郭志伟 吴家驹 江海涛 杜桂强

引用本文:
Citation:

含双曲超构材料的复合周期结构的带隙调控及应用

吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强

Band gap engineering and applications in compound periodic structure containing hyperbolic metamaterials

Wu Feng, Guo Zhi-Wei, Wu Jia-Ju, Jiang Hai-Tao, Du Gui-Qiang
PDF
HTML
导出引用
  • 等频面的拓扑结构强烈影响光在材料中的行为. 通常组成光子晶体原胞的材料都是介电材料, 其等频面都具有相同的封闭拓扑结构. 结构最为简单的光子晶体是由两种介电材料交替组成的一维光子晶体. 然而, 这种传统的光子晶体在横磁和横电偏振下的光子带隙将随着入射角的增大而向短波方向移动, 既不利于全向带隙的产生与展宽, 又使得基于光子带隙的一些应用限制在很窄的入射角度范围内. 本综述利用双曲超构材料对电磁波相位的独特调控作用, 在由具有开放的等频面的双曲超构材料和具有封闭的等频面的普通介电材料交替组成的复合周期结构中实现了随入射角零移以及红移的特殊带隙, 为研制具有新型功能的光学器件提供了新机理. 基于零移带隙, 可设计具有固定带宽的全向反射器和宽角度的近完美光吸收器. 基于红移带隙, 可设计宽角度的偏振选择器和超灵敏折射率传感器.
    Behaviours of light in materials strongly depend on the topological structure of the iso-frequency surface (IFS). The usual materials, of which the unit cell of photonic crystal is made up, are dielectrics, whose IFSs have the same closed topological structure. As a simplest photonic crystal, one-dimensional photonic crystal (1DPC) has attracted intensive attention due to its simple fabrication technique as well as numerous applications. However, in a conventional all-dielectric 1DPC, photonic band gaps (PBGs) for both transverse magnetic (TM) and transverse electric (TE) polarizations will shift toward short wavelengths (i.e. blueshift) as incident angle increases. The underlying physical reason is that the propagating phase in isotropic dielectric will decrease as incident angle increases. The blueshift property of band gap for TM and TE polarization will limit the band width of omnidirectional band gap and the range of operating incident angles in some PBG-based applications, including near-perfect absorption, polarization selection and sensitive refractive index sensing. However, for TM polarization, the propagating phase in a hyperbolic metamaterial (HMM) will increase with incident angle increasing. This special phase property of HMM provides us with a way to flexibly tune the angle-dependent property of band gap in periodic compound structure composed of alternative HMM with open IFS and dielectric with close IFS. In this review, we realize zeroshift (i.e. angle-independent) band gaps as well as redshift band gaps in 1DPCs containing HMMs, which can be utilized to realize near-perfect absorption, sensitive refractive index sensing and polarization selection working in a wide range of incident angles.
      通信作者: 江海涛, jiang-haitao@tongji.edu.cn
    • 基金项目: 国家级-国家重点研发计划(批准号: 2016YFA0200503) 资助的课题(2016YFA0301101)
      Corresponding author: Jiang Hai-Tao, jiang-haitao@tongji.edu.cn
    [1]

    Smith D R, Schurig D 2003 Phys. Rev. Lett. 90 077405Google Scholar

    [2]

    Drachev V P, Podolskiy V A, Kildishev A V 2013 Opt. Express 21 15048Google Scholar

    [3]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photonics 7 948Google Scholar

    [4]

    Shekhar P, Atkinson J, Jacob Z 2014 Nano Converg. 1 14Google Scholar

    [5]

    Ferrari L, Wu C, Lepage D, Zhang X, Liu Z 2015 Prog. Quant. Electron. 40 1Google Scholar

    [6]

    Guo Z W, Jiang H T, Chen H 2020 J. Appl. Phys. 127 071101

    [7]

    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X 2008 Science 321 930Google Scholar

    [8]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [9]

    龚健, 张利伟, 陈亮, 乔文涛, 汪舰 2015 64 067301Google Scholar

    Gong J, Zhang L W, Chen L, Qiao W T, Wang J 2015 Acta Phys. Sin. 64 067301Google Scholar

    [10]

    Jacob Z, Kim J Y, Naik G V, Boltasseva A, Narimanov E E, Shalaev V M 2010 Appl. Phys. B 100 215Google Scholar

    [11]

    Krishnamoorthy H N S, Jacob Z, Narimanov E, Kretzschmar I, Menon V M 2012 Science 336 205Google Scholar

    [12]

    Narimanov E E 2014 Phys. Rev. X 4 041014

    [13]

    Peragut F, Cerutti L, Baranov A, Hugonin J P, Taliercio T, Wilde D, Greffet J J 2017 Optica 4 1409Google Scholar

    [14]

    Guo Z, Jiang H, Li Y, Chen H, Agarwal G S 2018 Opt. Express 26 627Google Scholar

    [15]

    Yu K, Guo Z, Jiang H, Chen H 2016 J. Appl. Phys. 119 203102Google Scholar

    [16]

    Guo Z, Jiang H, Zhu K, Sun Y, Li Y, Chen H 2018 Phys. Rev. Appl. 10 064048Google Scholar

    [17]

    Ren M, Liu Y, Yu S, Dong L, Liu L, Deng F, Shi Y 2019 Eur. Phys. J. Plus 134 301Google Scholar

    [18]

    Yin X, Zhu H, Guo H, Deng M, Xu T, Gong Z, Li X, Hang Z H, Wu C, Li H, Chen S, Zhou L, Chen L 2019 Laser Photonics Rev. 13 1800081Google Scholar

    [19]

    Li H, Hao W, Yin X, Chen S, Chen L 2019 Adv. Opt. Mater. 7 1900493Google Scholar

    [20]

    Casse B D F, Lu W T, Huang Y J, Gultepe E, Menon L, Sridhar S 2010 Appl. Phys. Lett. 96 023114Google Scholar

    [21]

    Huo P, Liang Y, Zhang S, Lu Y, Xu T 2018 Laser Photonics Rev. 12 1700309Google Scholar

    [22]

    Kim M, Lee D, Kim T H, Yang Y, Park H J, Rho J 2019 ACS Photonics 6 2530Google Scholar

    [23]

    Yao J, Yang X, Yin X, Bartal G, Zhang X 2011 P. Natl. Acad. Sci. USA 108 11327Google Scholar

    [24]

    Sreekanth K V, Ouyang Q, Sreejith S, Zeng S, Lishu W, Ilker E, Dong W, El-Kabbash M, Ting Y, Lim C T, Hinczewski M, Strangi G, Yong K, Simpson R E, Singh R 2019 Adv. Opt. Mater. 7 1900081Google Scholar

    [25]

    Qi H, Sang T, Wang L, Yin X, Wang J, Wang Y 2019 Appl. Sci. 9 2011Google Scholar

    [26]

    Guo Y, Cortes C L, Molesky S, Jacob Z 2012 Appl. Phys. Lett. 101 131106Google Scholar

    [27]

    Xu T, Lezec H J 2011 Nat. Commun. 5 4141Google Scholar

    [28]

    Yang X, Yao J, Rho J, Yin X, Zhang X 2012 Nat. Photonics 6 450Google Scholar

    [29]

    Sreekanth K V, Alapan Y, ElKabbash M, Ilker E, Hinczewski M, Gurkan U A, de Luca A, Strangi G 2016 Nat. Mater. 15 621Google Scholar

    [30]

    Baqir M A, Farmani A, Fatima T, Raza M R, Shaukat S F, Mir A 2018 Appl. Opt. 57 9447Google Scholar

    [31]

    Zhou J, Kaplan A F, Chen L, Guo L J 2014 ACS Photonics 1 618Google Scholar

    [32]

    Inoue K, Ohtaka K 2004 Photonic Crystals: Physics, Fabrication and Applications (Berlin: Springer Press)

    [33]

    Sakoda K 2005 Optical Properties of Photonic Crystals (Berlin: Springer Press)

    [34]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (New Jersey: Princeton University Press)

    [35]

    Gong Q, Hu X 2013 Photonic Crystals: Principles and Applications (Boca Raton: CRC Press)

    [36]

    Zhu X 2015 Opt. Express 23 22274Google Scholar

    [37]

    Ding K, Zhang Z Q, Chan C T 2015 Phys. Rev. B 92 235310Google Scholar

    [38]

    Zhu X, Peng Y, Zhao D 2014 Opt. Express 22 18401Google Scholar

    [39]

    Zhu X, Feng L, Zhang P, Yin X, Zhang X 2013 Opt. Lett. 38 2821Google Scholar

    [40]

    Vlasov Y A, Bo X, Sturm J C, Norris D J 2001 Nature 414 289

    [41]

    Akahane Y, Asano T, Song B S, Noda S 2003 Nature 425 944Google Scholar

    [42]

    万钧, 张淳, 王灵俊, 资剑 1999 物理 28 393Google Scholar

    Wan J, Zhang C, Wang L J, Zi J 1999 Physics 28 393Google Scholar

    [43]

    倪培根 2010 59 340Google Scholar

    Ni P G 2010 Acta Phys. Sin. 59 340Google Scholar

    [44]

    Lončar M, Yoshie T, Scherer A, Gogna P, Qiu Y 2002 Appl. Phys. Lett. 81 2680Google Scholar

    [45]

    Zhou X, Qu H, Qi A, Ma X, Zhao S, Wang Y, Zheng W 2018 IEEE Photonic Tech. L. 30 1645Google Scholar

    [46]

    张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉 2015 64 114202Google Scholar

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202Google Scholar

    [47]

    欧阳征标, 李景镇, 张道中, 王启明 2002 光学学报 22 79Google Scholar

    Ouyang Z B, Li J Z, Zhang D Z, Wang Q M 2002 Acta Opt. Sin. 22 79Google Scholar

    [48]

    Wu F, Wu J, Fan C, Guo Z, Xue C, Jiang H, Sun Y, Li Y, Chen H 2020 Europhys. Lett. 129 34004Google Scholar

    [49]

    Xiao Z Y, Wang Z H 2006 Int. J. Infrared Millim. 27 443

    [50]

    Ritari T, Tuominen J, Ludvigsen H, Petersen J C, Sørensen T, Hansen T P, Simonsen H R 2004 Opt. Express 12 4080Google Scholar

    [51]

    严德贤, 李九生, 王怡 2019 68 207801Google Scholar

    Yan D X, Li J S, Wang Y 2019 Acta Phys. Sin. 68 207801Google Scholar

    [52]

    Zabelin V, Dunbar L A, Thomas N L, Houdré R, Kotlyar M V, O’Faolain L, Krauss T F 2007 Opt. Lett. 32 530Google Scholar

    [53]

    左依凡, 李培丽, 栾开智, 王磊 2018 67 034204Google Scholar

    Zuo Y F, Li P L, Luan K Z, Wang L 2018 Acta Phys. Sin. 67 034204Google Scholar

    [54]

    Mekis A, Chen J C, Kurland I, Fan S, Villeneuve P R, Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787Google Scholar

    [55]

    Chutinan A, Noda S 1999 Appl. Phys. Lett. 75 3739Google Scholar

    [56]

    Birks T A, Knight J C, Russell P St J 1997 Opt. Lett. 22 961Google Scholar

    [57]

    Russell P 2003 Science 299 358Google Scholar

    [58]

    魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢 2019 68 114209Google Scholar

    Wei W, Zhang Z M, Tang L Q, Ding L, Fan W D, Li Y G 2019 Acta Phys. Sin. 68 114209Google Scholar

    [59]

    江海涛, 李云辉, 李宏强, 朱荣林, 张冶文, 陈鸿 2003 物理 32 799Google Scholar

    Jiang H T, Li Y H, Li H Q, Zhu R L, Zhang Z W, Chen H 2003 Physics 32 799Google Scholar

    [60]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [61]

    Chen W, Hang Z H, Dong J, Xiao X, Wang H, Chan C T 2011 Phys. Rev. Lett. 107 023901Google Scholar

    [62]

    Yang B, Wu T, Zhang X 2017 Appl. Phys. Lett. 110 021109Google Scholar

    [63]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [64]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 27 1679

    [65]

    Winn J N, Fink Y, Fan S, Joannopoulos J D 1998 Opt. Lett. 23 1573Google Scholar

    [66]

    Park Y, Roh Y, Cho C, Jeon H, Sung M G, Woo J C 2003 Appl. Phys. Lett. 82 2770Google Scholar

    [67]

    Zhang Y, Wu Z, Cao Y, Zhang H 2015 Opt. Commun. 338 168Google Scholar

    [68]

    Jena S, Tokas R B, Sarkar P, Misal J S, Haque S M, Rao K D, Thakur S, Sahoo N K 2016 Thin Solid Films 599 138Google Scholar

    [69]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415Google Scholar

    [70]

    Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J M, Egorov A Y, Vasil’ev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112Google Scholar

    [71]

    Du G, Jiang H, Wang Z, Yang Y, Wang Z, Lin H, Chen H 2010 J. Opt. Soc. Am. B 27 1757Google Scholar

    [72]

    Wang X, Jiang X, You Q, Guo J, Dai X, Xiang Y 2017 Photonic Res. 5 536Google Scholar

    [73]

    Gao H, Li P, Yang S 2020 Opt. Commun. 457 124688Google Scholar

    [74]

    Huang S, Chen K, Jeng S 2017 Opt. Mater. Express 7 1267Google Scholar

    [75]

    Tsurimaki Y, Tong J K, Boriskin V N, Semenov A, Ayzatsky M I, Machekhin Y P, Chen G, Boriskina S V 2018 ACS Photonics 5 929Google Scholar

    [76]

    Boriskina S V, Tsurimaki Y 2018 J. Phys.: Condens. Matter 30 224003Google Scholar

    [77]

    Prokes S M, Glembocki O J, Livenere J E, Tumkur T U, Kitur J K, Zhu G, Wells B, Podolskiy V A, Noginov M A 2013 Opt. Express 21 14962Google Scholar

    [78]

    Riley C T, Smalley J S T, Post K W, Basov D N, Fainman Y, Wang D, Liu Z, Sirbuly D J 2016 Small 12 892Google Scholar

    [79]

    Sukham J, Takayama O, Mahmoodi M, Sychev S, Bogdanov A, Tavassoli S H, Lavrinenko A V, Malureanu R 2019 Nanoscale 11 12582Google Scholar

    [80]

    Dilts J, Hong C, Siahmakoun A, Syed M, Alisafaee H 2019 Opt. Lett. 44 4303Google Scholar

    [81]

    Xu D, Huang Q, Wang Y, Li P, Wen M, Jonnard P, Giglia A, Kozhevnikov I V, Wang K, Zhang Z, Wang Z 2015 Opt. Express 23 33018Google Scholar

    [82]

    Qi D, Wang X, Cheng Y, Gong R, Li B 2016 Opt. Mater. 62 52Google Scholar

    [83]

    Hu W, Li H, Cheng B, Yang J, Li Z, Xu J, Zhang D 1995 Opt. Lett. 20 964Google Scholar

    [84]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540Google Scholar

    [85]

    Li Z, Gu B, Yang G 1998 Phys. Rev. Lett. 81 2574Google Scholar

    [86]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901Google Scholar

    [87]

    Jiang H, Chen H, Li H, Zhang Y, Zi J, Zhu S 2004 Phys. Rev. E 69 066607Google Scholar

    [88]

    尹承平, 刘念华 2004 量子光学学报 10 169Google Scholar

    Yin C P, Liu N H 2004 Acta Sin.Quant. Opt. 10 169Google Scholar

    [89]

    Xiang Y, Dai X, Wen S, Tang Z, Fan D 2011 J. Opt. Soc. Am. B 28 1187Google Scholar

    [90]

    Kocaman S, Aras M S, Hsieh P, McMillan J F, Biris C G, Panoiu N C, Yu M B, Kwong D L, Stein A, Wong C W 2011 Nat. Photonics 5 499Google Scholar

    [91]

    Yao Z, Luo J, Lai Y 2016 Opt. Lett. 41 5106Google Scholar

    [92]

    Yao Z, Luo J, Lai Y 2017 Opt. Express 25 30931Google Scholar

    [93]

    Chen Y 2011 Phys. Lett. A 375 1156Google Scholar

    [94]

    Jiang H, Chen H, Li H, Zhang Y, Zhu S 2003 Appl. Phys. Lett. 83 5386Google Scholar

    [95]

    Wang L, Chen H, Zhu S 2004 Phys. Rev. B 70 245102Google Scholar

    [96]

    Guo J, Sun Y, Zhang Y, Li H, Jiang H, Chen H 2008 Phys. Rev. E 78 026607Google Scholar

    [97]

    Zhao L, Zhou Y, Wang A 2018 Opt. Lett. 43 5387Google Scholar

    [98]

    Singh P, Thapa K B, Kumar N, Yadav A K, Kumar D 2019 Int. J. Mod. Phys. B 33 1950194Google Scholar

    [99]

    Xue C, Wu F, Jiang H, Li Y, Zhang Y, Chen H 2016 Sci. Rep. 6 39418Google Scholar

    [100]

    Hu C, Zhang H, Liu G 2019 Appl. Opt. 58 2890Google Scholar

    [101]

    Yu Z, Wang Z, Fan S 2007 Appl. Phys. Lett. 90 121133Google Scholar

    [102]

    Guo Z, Wu F, Xue C, Jiang H, Sun Y, Li Y, Chen H 2018 J. Appl. Phys. 124 103104Google Scholar

    [103]

    Zhang J, Wang P, Ding Y, Wang Y 2019 Opt. Commun. 450 322Google Scholar

    [104]

    Liu B, Lu G, Cui L, Li J, Sun F, Liu F, Li Y, Yang T, Du G 2017 Opt. Express 25 13271Google Scholar

    [105]

    Yeh P 1988 Optical Waves in Layered Media (New Jersey: Wiley Press) pp102–110

    [106]

    Xue C, Ding Y, Jiang H, Li Y, Wang Z, Zhang Y, Chen H 2016 Phys. Rev. B 93 125310Google Scholar

    [107]

    Wu F, Lu G, Xue C, Jiang H, Guo Z, Zheng M, Chen C, Du G, Chen H 2018 Appl. Phys. Lett. 112 041902Google Scholar

    [108]

    Wu F, Lu G, Guo Z, Jiang H, Xue C, Zheng M, Chen C, Du G, Chen H 2018 Phys. Rev. Appl. 10 064022Google Scholar

    [109]

    Lu G, Wu F, Zheng M, Chen C, Zhou X, Diao C, Liu F, Du G, Xue C, Jiang H, Chen H 2019 Opt. Express 27 5326Google Scholar

    [110]

    Tumkur T U, Gu L, Kitur J K, Narimanov E E, Noginov M A 2012 Appl. Phys. Lett. 100 161103Google Scholar

    [111]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano. Lett. 12 1443Google Scholar

    [112]

    Zhao J, Chen Y, Feng Y 2008 Appl. Phys. Lett. 92 071114Google Scholar

    [113]

    Hong J, Kim K H, Shin J H, Huh C, Sung G Y 2007 Opt. Express 15 8972Google Scholar

    [114]

    Wu J, Wu F, Xue C, Guo Z, Jiang H, Sun Y, Li Y, Chen H 2019 Opt. Express 27 24835Google Scholar

    [115]

    Smalley J S T, Vallini F, Zhang X, Fainman Y 2018 Adv. Opt. Photonics 10 354Google Scholar

  • 图 1  含双曲超构材料的复合周期结构的示意图

    Fig. 1.  Schematic of the compound periodic structure containing hyperbolic metamaterials.

    图 2  传统的全介质一维光子晶体(AB)N的示意图

    Fig. 2.  Schematic of the conventional all-dielectric one-dimensional photonic crystal (AB)N.

    图 3  普通介质A和B的等频线(TM和TE偏振)

    Fig. 3.  Iso-frequency curves of isotropic dielectrics A and B (TM and TE polarizations).

    图 4  数值计算的一维光子晶体(AB)10的反射谱(TM和TE偏振)随入射角的变化

    Fig. 4.  Calculated reflectance spectrum of (AB)10 as a function of incident angle (TM and TE polarizations).

    图 5  含双曲超构材料的一维光子晶体[(CD)SB]N的示意图

    Fig. 5.  Schematic of the one-dimensional photonic crystal containing hyperbolic metamaterials [(CD)SB]N.

    图 6  (a)双曲材料A和(b)普通介质B的等频线(TM偏振)

    Fig. 6.  Iso-frequency curves of (a) hyperbolic metamaterial A and (b) isotropic dielectric B (TM polarization).

    图 7  含双曲超构材料的一维光子晶体[(CD)2B]3在不同入射角下的反射谱(TM偏振)  (a) 数值计算结果[107]; (b) 实验测量结果[107]

    Fig. 7.  Reflectance spectra of [(CD)2B]3 under different incident angles (TM polarization): (a) Simulated result[107]; (b) experimental result[107].

    图 8  含双曲超构材料的一维光子晶体[(CD)2B]3的反射谱(TM偏振)随入射角的变化[107], 其中彩色背景代表数值计算结果, 黑色空心圆圈代表实验测量的带隙边缘(由最靠近带隙的反射极小值提取)

    Fig. 8.  Reflectance spectrum of [(CD)2B]3 as a function of incident angle (TM polarization)[107]. Background color represents the calculated result. Black hollow circle represents measured gap edge extracted from the reflectance dip.

    图 9  数值计算的含双曲超构材料的一维光子晶体[(CD)2B]3的反射谱(TM和TE偏振)随入射角的变化[108]

    Fig. 9.  Calculated reflectance spectrum of [(CD)2B]3 as a function of incident angle (TM and TE polarizations)[108].

    图 10  实验测量的含双曲超构材料的一维光子晶体[(CD)2B]3在不同入射角下的反射谱 (a) TM偏振[108]; (b) TE偏振[108]

    Fig. 10.  Experimental reflectance spectra of [(CD)2B]3 under different incident angles: (a) TM polarization[108]; (b) TE polarization[108].

    图 11  (a) 异质结M[(CD)2B]3的结构示意图[109]; (b) 实验测量的异质结M[(CD)2B]3在不同入射角下的吸收谱(TM偏振)[109]

    Fig. 11.  (a) Schematic of the heterostructure M[(CD)2B]3[109]; (b) experimental absorptance spectra of M[(CD)2B]3 under different incident angles (TM polarization)[109].

    图 12  实验测量的异质结M[(CD)2B]3在波长380 nm处的吸收率随入射角的变化(TM偏振)[109]

    Fig. 12.  Experimental absorptance of M[(CD)2B]3 as a function of incident angle at $\lambda = 380$ nm (TM polarization)[109].

    图 13  (a) 实验测量的含双曲超构材料的一维光子晶体[(CD)2B]3在波长365 nm处的TM和TE偏振的反射率随入射角的变化[108]; (b) 相应的偏振选择比随入射角的变化[108]

    Fig. 13.  (a) Experimental reflectance of M[(CD)2B]3 as a function of incident angle for TM and TE polarizations at $\lambda = 365$ nm[108]; (b) corresponding polarization selection ratio as a function of incident angle[108].

    图 14  数值计算的异质结M[(CD)2B]9的反射谱(TM和TE偏振)随入射角的变化[114]

    Fig. 14.  Calculated reflectance spectrum of M[(CD)2B]9 as a function of incident angle (TM and TE polarizations)[114].

    图 15  (a) 折射率传感器的示意图[114]; (b) 数值计算的传感器的最佳折射率分辨率随入射角的变化[114]

    Fig. 15.  (a) Schematic of the refractive index sensor[114]; (b) calculated minimal refractive index resolution as a function of incident angle[114].

    Baidu
  • [1]

    Smith D R, Schurig D 2003 Phys. Rev. Lett. 90 077405Google Scholar

    [2]

    Drachev V P, Podolskiy V A, Kildishev A V 2013 Opt. Express 21 15048Google Scholar

    [3]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photonics 7 948Google Scholar

    [4]

    Shekhar P, Atkinson J, Jacob Z 2014 Nano Converg. 1 14Google Scholar

    [5]

    Ferrari L, Wu C, Lepage D, Zhang X, Liu Z 2015 Prog. Quant. Electron. 40 1Google Scholar

    [6]

    Guo Z W, Jiang H T, Chen H 2020 J. Appl. Phys. 127 071101

    [7]

    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X 2008 Science 321 930Google Scholar

    [8]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [9]

    龚健, 张利伟, 陈亮, 乔文涛, 汪舰 2015 64 067301Google Scholar

    Gong J, Zhang L W, Chen L, Qiao W T, Wang J 2015 Acta Phys. Sin. 64 067301Google Scholar

    [10]

    Jacob Z, Kim J Y, Naik G V, Boltasseva A, Narimanov E E, Shalaev V M 2010 Appl. Phys. B 100 215Google Scholar

    [11]

    Krishnamoorthy H N S, Jacob Z, Narimanov E, Kretzschmar I, Menon V M 2012 Science 336 205Google Scholar

    [12]

    Narimanov E E 2014 Phys. Rev. X 4 041014

    [13]

    Peragut F, Cerutti L, Baranov A, Hugonin J P, Taliercio T, Wilde D, Greffet J J 2017 Optica 4 1409Google Scholar

    [14]

    Guo Z, Jiang H, Li Y, Chen H, Agarwal G S 2018 Opt. Express 26 627Google Scholar

    [15]

    Yu K, Guo Z, Jiang H, Chen H 2016 J. Appl. Phys. 119 203102Google Scholar

    [16]

    Guo Z, Jiang H, Zhu K, Sun Y, Li Y, Chen H 2018 Phys. Rev. Appl. 10 064048Google Scholar

    [17]

    Ren M, Liu Y, Yu S, Dong L, Liu L, Deng F, Shi Y 2019 Eur. Phys. J. Plus 134 301Google Scholar

    [18]

    Yin X, Zhu H, Guo H, Deng M, Xu T, Gong Z, Li X, Hang Z H, Wu C, Li H, Chen S, Zhou L, Chen L 2019 Laser Photonics Rev. 13 1800081Google Scholar

    [19]

    Li H, Hao W, Yin X, Chen S, Chen L 2019 Adv. Opt. Mater. 7 1900493Google Scholar

    [20]

    Casse B D F, Lu W T, Huang Y J, Gultepe E, Menon L, Sridhar S 2010 Appl. Phys. Lett. 96 023114Google Scholar

    [21]

    Huo P, Liang Y, Zhang S, Lu Y, Xu T 2018 Laser Photonics Rev. 12 1700309Google Scholar

    [22]

    Kim M, Lee D, Kim T H, Yang Y, Park H J, Rho J 2019 ACS Photonics 6 2530Google Scholar

    [23]

    Yao J, Yang X, Yin X, Bartal G, Zhang X 2011 P. Natl. Acad. Sci. USA 108 11327Google Scholar

    [24]

    Sreekanth K V, Ouyang Q, Sreejith S, Zeng S, Lishu W, Ilker E, Dong W, El-Kabbash M, Ting Y, Lim C T, Hinczewski M, Strangi G, Yong K, Simpson R E, Singh R 2019 Adv. Opt. Mater. 7 1900081Google Scholar

    [25]

    Qi H, Sang T, Wang L, Yin X, Wang J, Wang Y 2019 Appl. Sci. 9 2011Google Scholar

    [26]

    Guo Y, Cortes C L, Molesky S, Jacob Z 2012 Appl. Phys. Lett. 101 131106Google Scholar

    [27]

    Xu T, Lezec H J 2011 Nat. Commun. 5 4141Google Scholar

    [28]

    Yang X, Yao J, Rho J, Yin X, Zhang X 2012 Nat. Photonics 6 450Google Scholar

    [29]

    Sreekanth K V, Alapan Y, ElKabbash M, Ilker E, Hinczewski M, Gurkan U A, de Luca A, Strangi G 2016 Nat. Mater. 15 621Google Scholar

    [30]

    Baqir M A, Farmani A, Fatima T, Raza M R, Shaukat S F, Mir A 2018 Appl. Opt. 57 9447Google Scholar

    [31]

    Zhou J, Kaplan A F, Chen L, Guo L J 2014 ACS Photonics 1 618Google Scholar

    [32]

    Inoue K, Ohtaka K 2004 Photonic Crystals: Physics, Fabrication and Applications (Berlin: Springer Press)

    [33]

    Sakoda K 2005 Optical Properties of Photonic Crystals (Berlin: Springer Press)

    [34]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (New Jersey: Princeton University Press)

    [35]

    Gong Q, Hu X 2013 Photonic Crystals: Principles and Applications (Boca Raton: CRC Press)

    [36]

    Zhu X 2015 Opt. Express 23 22274Google Scholar

    [37]

    Ding K, Zhang Z Q, Chan C T 2015 Phys. Rev. B 92 235310Google Scholar

    [38]

    Zhu X, Peng Y, Zhao D 2014 Opt. Express 22 18401Google Scholar

    [39]

    Zhu X, Feng L, Zhang P, Yin X, Zhang X 2013 Opt. Lett. 38 2821Google Scholar

    [40]

    Vlasov Y A, Bo X, Sturm J C, Norris D J 2001 Nature 414 289

    [41]

    Akahane Y, Asano T, Song B S, Noda S 2003 Nature 425 944Google Scholar

    [42]

    万钧, 张淳, 王灵俊, 资剑 1999 物理 28 393Google Scholar

    Wan J, Zhang C, Wang L J, Zi J 1999 Physics 28 393Google Scholar

    [43]

    倪培根 2010 59 340Google Scholar

    Ni P G 2010 Acta Phys. Sin. 59 340Google Scholar

    [44]

    Lončar M, Yoshie T, Scherer A, Gogna P, Qiu Y 2002 Appl. Phys. Lett. 81 2680Google Scholar

    [45]

    Zhou X, Qu H, Qi A, Ma X, Zhao S, Wang Y, Zheng W 2018 IEEE Photonic Tech. L. 30 1645Google Scholar

    [46]

    张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉 2015 64 114202Google Scholar

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202Google Scholar

    [47]

    欧阳征标, 李景镇, 张道中, 王启明 2002 光学学报 22 79Google Scholar

    Ouyang Z B, Li J Z, Zhang D Z, Wang Q M 2002 Acta Opt. Sin. 22 79Google Scholar

    [48]

    Wu F, Wu J, Fan C, Guo Z, Xue C, Jiang H, Sun Y, Li Y, Chen H 2020 Europhys. Lett. 129 34004Google Scholar

    [49]

    Xiao Z Y, Wang Z H 2006 Int. J. Infrared Millim. 27 443

    [50]

    Ritari T, Tuominen J, Ludvigsen H, Petersen J C, Sørensen T, Hansen T P, Simonsen H R 2004 Opt. Express 12 4080Google Scholar

    [51]

    严德贤, 李九生, 王怡 2019 68 207801Google Scholar

    Yan D X, Li J S, Wang Y 2019 Acta Phys. Sin. 68 207801Google Scholar

    [52]

    Zabelin V, Dunbar L A, Thomas N L, Houdré R, Kotlyar M V, O’Faolain L, Krauss T F 2007 Opt. Lett. 32 530Google Scholar

    [53]

    左依凡, 李培丽, 栾开智, 王磊 2018 67 034204Google Scholar

    Zuo Y F, Li P L, Luan K Z, Wang L 2018 Acta Phys. Sin. 67 034204Google Scholar

    [54]

    Mekis A, Chen J C, Kurland I, Fan S, Villeneuve P R, Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787Google Scholar

    [55]

    Chutinan A, Noda S 1999 Appl. Phys. Lett. 75 3739Google Scholar

    [56]

    Birks T A, Knight J C, Russell P St J 1997 Opt. Lett. 22 961Google Scholar

    [57]

    Russell P 2003 Science 299 358Google Scholar

    [58]

    魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢 2019 68 114209Google Scholar

    Wei W, Zhang Z M, Tang L Q, Ding L, Fan W D, Li Y G 2019 Acta Phys. Sin. 68 114209Google Scholar

    [59]

    江海涛, 李云辉, 李宏强, 朱荣林, 张冶文, 陈鸿 2003 物理 32 799Google Scholar

    Jiang H T, Li Y H, Li H Q, Zhu R L, Zhang Z W, Chen H 2003 Physics 32 799Google Scholar

    [60]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [61]

    Chen W, Hang Z H, Dong J, Xiao X, Wang H, Chan C T 2011 Phys. Rev. Lett. 107 023901Google Scholar

    [62]

    Yang B, Wu T, Zhang X 2017 Appl. Phys. Lett. 110 021109Google Scholar

    [63]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [64]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 27 1679

    [65]

    Winn J N, Fink Y, Fan S, Joannopoulos J D 1998 Opt. Lett. 23 1573Google Scholar

    [66]

    Park Y, Roh Y, Cho C, Jeon H, Sung M G, Woo J C 2003 Appl. Phys. Lett. 82 2770Google Scholar

    [67]

    Zhang Y, Wu Z, Cao Y, Zhang H 2015 Opt. Commun. 338 168Google Scholar

    [68]

    Jena S, Tokas R B, Sarkar P, Misal J S, Haque S M, Rao K D, Thakur S, Sahoo N K 2016 Thin Solid Films 599 138Google Scholar

    [69]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415Google Scholar

    [70]

    Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J M, Egorov A Y, Vasil’ev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112Google Scholar

    [71]

    Du G, Jiang H, Wang Z, Yang Y, Wang Z, Lin H, Chen H 2010 J. Opt. Soc. Am. B 27 1757Google Scholar

    [72]

    Wang X, Jiang X, You Q, Guo J, Dai X, Xiang Y 2017 Photonic Res. 5 536Google Scholar

    [73]

    Gao H, Li P, Yang S 2020 Opt. Commun. 457 124688Google Scholar

    [74]

    Huang S, Chen K, Jeng S 2017 Opt. Mater. Express 7 1267Google Scholar

    [75]

    Tsurimaki Y, Tong J K, Boriskin V N, Semenov A, Ayzatsky M I, Machekhin Y P, Chen G, Boriskina S V 2018 ACS Photonics 5 929Google Scholar

    [76]

    Boriskina S V, Tsurimaki Y 2018 J. Phys.: Condens. Matter 30 224003Google Scholar

    [77]

    Prokes S M, Glembocki O J, Livenere J E, Tumkur T U, Kitur J K, Zhu G, Wells B, Podolskiy V A, Noginov M A 2013 Opt. Express 21 14962Google Scholar

    [78]

    Riley C T, Smalley J S T, Post K W, Basov D N, Fainman Y, Wang D, Liu Z, Sirbuly D J 2016 Small 12 892Google Scholar

    [79]

    Sukham J, Takayama O, Mahmoodi M, Sychev S, Bogdanov A, Tavassoli S H, Lavrinenko A V, Malureanu R 2019 Nanoscale 11 12582Google Scholar

    [80]

    Dilts J, Hong C, Siahmakoun A, Syed M, Alisafaee H 2019 Opt. Lett. 44 4303Google Scholar

    [81]

    Xu D, Huang Q, Wang Y, Li P, Wen M, Jonnard P, Giglia A, Kozhevnikov I V, Wang K, Zhang Z, Wang Z 2015 Opt. Express 23 33018Google Scholar

    [82]

    Qi D, Wang X, Cheng Y, Gong R, Li B 2016 Opt. Mater. 62 52Google Scholar

    [83]

    Hu W, Li H, Cheng B, Yang J, Li Z, Xu J, Zhang D 1995 Opt. Lett. 20 964Google Scholar

    [84]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540Google Scholar

    [85]

    Li Z, Gu B, Yang G 1998 Phys. Rev. Lett. 81 2574Google Scholar

    [86]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901Google Scholar

    [87]

    Jiang H, Chen H, Li H, Zhang Y, Zi J, Zhu S 2004 Phys. Rev. E 69 066607Google Scholar

    [88]

    尹承平, 刘念华 2004 量子光学学报 10 169Google Scholar

    Yin C P, Liu N H 2004 Acta Sin.Quant. Opt. 10 169Google Scholar

    [89]

    Xiang Y, Dai X, Wen S, Tang Z, Fan D 2011 J. Opt. Soc. Am. B 28 1187Google Scholar

    [90]

    Kocaman S, Aras M S, Hsieh P, McMillan J F, Biris C G, Panoiu N C, Yu M B, Kwong D L, Stein A, Wong C W 2011 Nat. Photonics 5 499Google Scholar

    [91]

    Yao Z, Luo J, Lai Y 2016 Opt. Lett. 41 5106Google Scholar

    [92]

    Yao Z, Luo J, Lai Y 2017 Opt. Express 25 30931Google Scholar

    [93]

    Chen Y 2011 Phys. Lett. A 375 1156Google Scholar

    [94]

    Jiang H, Chen H, Li H, Zhang Y, Zhu S 2003 Appl. Phys. Lett. 83 5386Google Scholar

    [95]

    Wang L, Chen H, Zhu S 2004 Phys. Rev. B 70 245102Google Scholar

    [96]

    Guo J, Sun Y, Zhang Y, Li H, Jiang H, Chen H 2008 Phys. Rev. E 78 026607Google Scholar

    [97]

    Zhao L, Zhou Y, Wang A 2018 Opt. Lett. 43 5387Google Scholar

    [98]

    Singh P, Thapa K B, Kumar N, Yadav A K, Kumar D 2019 Int. J. Mod. Phys. B 33 1950194Google Scholar

    [99]

    Xue C, Wu F, Jiang H, Li Y, Zhang Y, Chen H 2016 Sci. Rep. 6 39418Google Scholar

    [100]

    Hu C, Zhang H, Liu G 2019 Appl. Opt. 58 2890Google Scholar

    [101]

    Yu Z, Wang Z, Fan S 2007 Appl. Phys. Lett. 90 121133Google Scholar

    [102]

    Guo Z, Wu F, Xue C, Jiang H, Sun Y, Li Y, Chen H 2018 J. Appl. Phys. 124 103104Google Scholar

    [103]

    Zhang J, Wang P, Ding Y, Wang Y 2019 Opt. Commun. 450 322Google Scholar

    [104]

    Liu B, Lu G, Cui L, Li J, Sun F, Liu F, Li Y, Yang T, Du G 2017 Opt. Express 25 13271Google Scholar

    [105]

    Yeh P 1988 Optical Waves in Layered Media (New Jersey: Wiley Press) pp102–110

    [106]

    Xue C, Ding Y, Jiang H, Li Y, Wang Z, Zhang Y, Chen H 2016 Phys. Rev. B 93 125310Google Scholar

    [107]

    Wu F, Lu G, Xue C, Jiang H, Guo Z, Zheng M, Chen C, Du G, Chen H 2018 Appl. Phys. Lett. 112 041902Google Scholar

    [108]

    Wu F, Lu G, Guo Z, Jiang H, Xue C, Zheng M, Chen C, Du G, Chen H 2018 Phys. Rev. Appl. 10 064022Google Scholar

    [109]

    Lu G, Wu F, Zheng M, Chen C, Zhou X, Diao C, Liu F, Du G, Xue C, Jiang H, Chen H 2019 Opt. Express 27 5326Google Scholar

    [110]

    Tumkur T U, Gu L, Kitur J K, Narimanov E E, Noginov M A 2012 Appl. Phys. Lett. 100 161103Google Scholar

    [111]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano. Lett. 12 1443Google Scholar

    [112]

    Zhao J, Chen Y, Feng Y 2008 Appl. Phys. Lett. 92 071114Google Scholar

    [113]

    Hong J, Kim K H, Shin J H, Huh C, Sung G Y 2007 Opt. Express 15 8972Google Scholar

    [114]

    Wu J, Wu F, Xue C, Guo Z, Jiang H, Sun Y, Li Y, Chen H 2019 Opt. Express 27 24835Google Scholar

    [115]

    Smalley J S T, Vallini F, Zhang X, Fainman Y 2018 Adv. Opt. Photonics 10 354Google Scholar

  • [1] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输.  , 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [2] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究.  , 2021, (): . doi: 10.7498/aps.70.20211299
    [3] 邹俊辉, 张娟. 混合准周期异质结构的带隙补偿与展宽.  , 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [4] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究.  , 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [5] 李文胜, 罗时军, 黄海铭, 张琴, 是度芳. 含特异材料光子晶体隧穿模的偏振特性.  , 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [6] 费宏明, 周飞, 杨毅彪, 梁九卿. 光子晶体双量子阱的共振隧穿.  , 2011, 60(7): 074225. doi: 10.7498/aps.60.074225
    [7] 栗岩锋, 胡晓堃, 王爱民. 基于高折射率断环结构的全固光子带隙光纤的设计.  , 2011, 60(6): 064212. doi: 10.7498/aps.60.064212
    [8] 倪培根. 光子晶体制备技术和应用研究进展.  , 2010, 59(1): 340-350. doi: 10.7498/aps.59.340
    [9] 张正仁, 隆正文, 袁玉群, 刁心峰. 对称型单负交替一维光子晶体的能带结构.  , 2010, 59(1): 587-591. doi: 10.7498/aps.59.587
    [10] 米 艳, 侯蓝田, 周桂耀, 王 康, 陈 超, 高 飞, 刘博文, 胡明列. 空芯光子晶体光纤光子带隙的测量与数值模拟.  , 2008, 57(6): 3583-3587. doi: 10.7498/aps.57.3583
    [11] 朱永政, 尹计秋, 邱明辉. 非密堆积TiO2空心微球光子晶体的制备与能带分析.  , 2008, 57(12): 7725-7728. doi: 10.7498/aps.57.7725
    [12] 李 蓉, 程 阳, 崔丽彬, 朱 峰, 周 静, 刘大禾, 刘 守, 张向苏. 晶格数目对面心立方结构光子晶体带隙的影响.  , 2006, 55(1): 188-191. doi: 10.7498/aps.55.188
    [13] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性.  , 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [14] 顾建忠, 林水洋, 王 闯, 喻筱静, 孙晓玮. 基于补偿型微带谐振单元的一维光子带隙结构.  , 2006, 55(8): 4176-4180. doi: 10.7498/aps.55.4176
    [15] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究.  , 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [16] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙.  , 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [17] 张海涛, 巩马理, 王东生, 李 伟, 赵达尊. 群论在光子带隙计算中的应用.  , 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
    [18] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性.  , 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [19] 何拥军, 苏惠敏, 唐芳琼, 董鹏, 汪河洲. 准完全带隙胶体非晶光子晶体.  , 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
    [20] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构.  , 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
计量
  • 文章访问数:  10979
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-02-05
  • 上网日期:  2020-05-14
  • 刊出日期:  2020-08-05

/

返回文章
返回
Baidu
map