搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2O3衬底无催化剂生长GaN纳米线及其光学性能

梁琦 王如志 杨孟骐 王长昊 刘金伟

引用本文:
Citation:

Al2O3衬底无催化剂生长GaN纳米线及其光学性能

梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟

Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property

Liang Qi, Wang Ru-Zhi, Yang Meng-Qi, Wang Chang-Hao, Liu Jin-Wei
PDF
HTML
导出引用
  • 采用一种绿色的等离子增强化学气相沉积法, 以Al2O3为衬底, Ga金属为镓源, N2为氮源, 在不采用催化剂的情况下, 成功制备获得了结晶质量良好的GaN纳米线. 研究表明, 生长温度可显著调控GaN纳米线的形貌, 当反应温度为950 ℃时, 生长出的GaN微米片为六边形; 当反应温度为1000 ℃时, 生长出了长度为10—20 μm的超长GaN纳米线. 随着反应时间增加, GaN纳米线的长度增加. GaN纳米线内部存在着压应力, 应力大小为0.84 GPa. 同时, 也进一步讨论了GaN纳米线无催化剂生长机制. GaN纳米线光致发光结果显示, GaN纳米线缺陷较少, 结晶质量良好, 在360 nm处有一个较为尖锐的本征发光峰, 可应用于紫外激光器等光电子器件. 本研究结果将为新型光电器件低成本绿色制备提供一个可行的技术方案.
    A green and low-cost method to prepare high-quality GaN (gallium nitride) nanowires is important for the applications of GaN-based devices on a large scale. In this work, high-quality GaN nanowires are successfully prepared by a green plasma enhanced chemical vapor deposition method without catalyst, with Al2O3 used as a substrate, metal Ga as a gallium source and N2 as a nitrogen source. The obtained GaN nanomaterials are investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and photoluminescence (PL) spectroscopy. The XRD results demonstrate that hexagonal-wurtzite GaN is obtained and no other phases exist. The SEM results show that GaN nanowires and hexagonal GaN microsheets are obtained at different temperatures. When the growth temperature is at 950 ℃ (reaction time for 2 h), the hexagonal GaN microsheets each with a size of 15 μm are obtained. When the growth temperature is at 1000 ℃(reaction time for 2 h), the GaN nanowires with the lengths in a range of 10–20 μm are obtained. With the reaction temperature increasing from 0.5 h to 2 h, the lengths of GaN nanowires increase. The TEM results suggest that the GaN nanowires are of high crystallinity and the growth direction of GaN nanowires is in the [0001] direction. The Raman results indicate that there exists a compressive stress in the GaN nanowires and its value is 0.84 GPa. Meanwhile, the growth mechanism of GaN nanowires is also proposed. The morphologies of GaN nanomaterials are tailed by the growth temperature, which may be caused by Ga atomic surface diffusion. Ga atoms have low diffusion energy and small diffusion length at 950 ℃. They gather in the non-polar m-plane. The (0001) plane with the lowest energy begins to grow. Then, hexagonal GaN microsheets are obtained. When reaction temperature is at 1000 ℃, the diffusion length of Ga atoms increases. Ga atoms can diffuse into (0001) plane. In order to maintain the lowest surface energy, the GaN nanowires grow along the [0001] direction. The PL results indicate that the obtained GaN nanowires have just an intrinsic and sharp luminescence peak at 360 nm, which possesses promising applications in photoelectric devices such as ultraviolet laser emitter. Our research will also provide a low-cost and green technical method of fabricating the new photoelectric devices.
      通信作者: 王如志, wrz@bjut.edu.cn
    • 基金项目: 国家级-国家自然基金(11774017)
      Corresponding author: Wang Ru-Zhi, wrz@bjut.edu.cn
    [1]

    Lin Y, Yang M, Wang W, Lin Z, Li G 2016 Cryst. Eng. Comm. 18 8926Google Scholar

    [2]

    Takekawa N, Hayashida N, Ohzeki D, Yamaguchi A, Murakami H, Kumagai Y, Matsumoto K, Koukitu A 2018 J. Cryst. Growth 502 7Google Scholar

    [3]

    Wang X F, Zhang Y, Chen X M, He M, Liu C, Yin Y A, Zou X S, Li S T 2014 Nanoscale 6 12009Google Scholar

    [4]

    Patsha A, Amirthapandian S, Pandian R, Dhara S 2013 J. Mater. Chem. C 1 8086Google Scholar

    [5]

    陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉 2013 62 177701Google Scholar

    Chen C C, Liu L Y, Wang R Z, Song X M, Wang B, Yan H 2013 Acta Phys. Sin. 62 177701Google Scholar

    [6]

    Calarco R, Meijers R J, Debnath K R, Stoica T, Sutter E, Luth H 2007 Nano Lett. 7 2248Google Scholar

    [7]

    Kumaresan V, Largeau L, Madouri A, Glas F, Zhang H Z, Oehler F, Cavanna A, Babichev A, Travers L, Gogneau N, Tchernycheva M, Harmand C J 2016 Nano Lett. 16 4895Google Scholar

    [8]

    Kesaria M, Shetty S, Shivaprasad M S 2011 Cryst. Growth Des. 11 4900Google Scholar

    [9]

    Kuykendall T, Pauzauskie P, Lee S K, Zhang Y F, Goldberger J, Yang P D 2003 Nano Lett. 3 1063Google Scholar

    [10]

    Ji Y H, Wang R Z, Feng X Y, Zhang Y F, Yan H 2017 J. Phys. Chem. C 121 24804Google Scholar

    [11]

    Wang Y Q, Wang R Z, Li Y J, Zhang Y F, Zhu M K., Wang B B, Yan H 2013 Cryst. Eng. Comm 15 1626Google Scholar

    [12]

    Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H, Wang R Z 2015 Sci. Rep. 5 17692Google Scholar

    [13]

    Jacobs B W, Crimp M A, McElroy K, Ayres V M 2008 Nano Lett. 8 4353Google Scholar

    [14]

    Chang K W, Wu J J 2002 J. Phys. Chem. B 106 7796Google Scholar

    [15]

    Stamplecoskie K G, Ju L, Farvid S S, Radovanovic P V 2008 Nano Lett. 8 2674Google Scholar

    [16]

    Li C, Bando Y, Golberg D 2010 ACS Nano 4 2422Google Scholar

    [17]

    赵军伟, 张跃飞, 宋雪梅, 严辉, 王如志 2014 63 117702Google Scholar

    Zhao J W, Zhang Y F, Song X M, Yan H, Wang R Z 2014 Acta Phys. Sin. 63 117702Google Scholar

    [18]

    Schiaber Z D, Calabrese G, Kong X, Trampert A, Jenichen B, de Silva J HD, Geelhaar L, Brandt O, Fermandez-Garrido S 2017 Nano Lett. 17 63Google Scholar

    [19]

    Choi S, Song H G, Yoo Y S, Lee C, Woo K Y, Lee E, Roh S D, Cho Y H 2018 ACS Photonics 5 2825Google Scholar

    [20]

    Feng X Y, Wang R Z, Liang Q, Ji Y H, Yang M Q 2019 Cryst. Growth Des. 19 2687Google Scholar

    [21]

    Wei X F, Shi F 2011 Appl. Surf. Sci. 257 9931Google Scholar

    [22]

    Shen L H, Cheng T M, Wu L J, Li X G, Cui Q L 2008 J. Alloys Compd. 465 562Google Scholar

    [23]

    Ramesh C, Tyagi P, Bhattacharyya B, Husale S, Maurya K K, Kumar M S, Kushvaha S S 2019 J. Alloys Compd. 770 572Google Scholar

    [24]

    Purushothaman V, Ramakrishnan V, Jeganathan K 2012 Cryst. Eng. Comm. 14 8390Google Scholar

    [25]

    Purushothaman V, Ramakrishnan V, Jeganathan K 2012 RSC Adv. 2 4802Google Scholar

    [26]

    Li Y, Wang W L, Li X C, Huang L G, Lin Z T, Zheng Y L, Chen X F, Li G Q 2019 J. Alloys Compd. 771 1000Google Scholar

    [27]

    Wei P C, Chen L C, Chen K H 2014 J. Appl. Phys. 116 124301Google Scholar

    [28]

    Wu C, Yu J D, E Y X, Luo Y, Hao Z B, Wang J, Wang L, Sun C Z, Xiong B, Han Y J, Li H T 2016 Cryst. Growth Des. 16 5023Google Scholar

    [29]

    Xian Y L, Huang S J, Zheng Z Y, Fan B F, Wu Z S, Jiang H, Wang G 2011 J. Cryst. Growth 325 32Google Scholar

    [30]

    Matoussi A, Nasr F B, Boufaden T, Salh R, Fakhfakh Z, Guermazi S, ElJani B, Fitting H J 2010 J. Lumin. 130 399Google Scholar

    [31]

    Sun R, Wang G G, Peng Z C 2018 Mater. Lett. 217 288Google Scholar

  • 图 1  950 ℃和1000 ℃下获得样品的XRD图(反应时间为2 h)

    Fig. 1.  X-ray diffraction patterns of the samples fabricated at 950 ℃ and 1000 ℃ (Reaction time is 2 h)

    图 2  反应温度为1000 ℃时, 不同反应时间获得GaN样品的SEM图 (a) 0.5 h, (b) 1 h, (c) 2 h; (d) 950 ℃下获得GaN样品的SEM图

    Fig. 2.  SEM images of GaN samples fabricated at different reaction time (Reaction temperature is 1000 ℃): (a) 0.5 h, (b) 1 h, (c) 2 h; (d) SEM image of GaN sample fabricated at 950 ℃.

    图 3  1000 ℃反应2 h获得GaN纳米线的TEM图 (a) 单根GaN纳米线的TEM照片; (b) 图(a)中的GaN纳米线的高倍TEM照片; (c) 另一根GaN纳米线的TEM照片; (d) 图(c)中的GaN纳米线的高倍TEM照片

    Fig. 3.  TEM images of GaN nanowires fabricated at 1000 ℃ (Reaction time is 2 h): (a) TEM image of single GaN nanowire; (b) HR-TEM image of GaN nanowire in (a); (c) TEM image of another GaN nanowire; (d) HR-TEM image of GaN nanowire in (c).

    图 4  1000 ℃反应2 h获得GaN纳米线的Raman谱图

    Fig. 4.  Raman spectra of GaN nanowires fabricated at 1000 ℃ (Reaction time is 2 h).

    图 5  GaN纳米材料的生长机理示意图

    Fig. 5.  Growth mechanism diagram of GaN nanomaterials.

    图 6  1000 ℃反应2 h获得GaN纳米线的PL谱图

    Fig. 6.  PL spectrum of GaN nanowires fabricated at 1000 ℃ (Reaction time is 2 h).

    Baidu
  • [1]

    Lin Y, Yang M, Wang W, Lin Z, Li G 2016 Cryst. Eng. Comm. 18 8926Google Scholar

    [2]

    Takekawa N, Hayashida N, Ohzeki D, Yamaguchi A, Murakami H, Kumagai Y, Matsumoto K, Koukitu A 2018 J. Cryst. Growth 502 7Google Scholar

    [3]

    Wang X F, Zhang Y, Chen X M, He M, Liu C, Yin Y A, Zou X S, Li S T 2014 Nanoscale 6 12009Google Scholar

    [4]

    Patsha A, Amirthapandian S, Pandian R, Dhara S 2013 J. Mater. Chem. C 1 8086Google Scholar

    [5]

    陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉 2013 62 177701Google Scholar

    Chen C C, Liu L Y, Wang R Z, Song X M, Wang B, Yan H 2013 Acta Phys. Sin. 62 177701Google Scholar

    [6]

    Calarco R, Meijers R J, Debnath K R, Stoica T, Sutter E, Luth H 2007 Nano Lett. 7 2248Google Scholar

    [7]

    Kumaresan V, Largeau L, Madouri A, Glas F, Zhang H Z, Oehler F, Cavanna A, Babichev A, Travers L, Gogneau N, Tchernycheva M, Harmand C J 2016 Nano Lett. 16 4895Google Scholar

    [8]

    Kesaria M, Shetty S, Shivaprasad M S 2011 Cryst. Growth Des. 11 4900Google Scholar

    [9]

    Kuykendall T, Pauzauskie P, Lee S K, Zhang Y F, Goldberger J, Yang P D 2003 Nano Lett. 3 1063Google Scholar

    [10]

    Ji Y H, Wang R Z, Feng X Y, Zhang Y F, Yan H 2017 J. Phys. Chem. C 121 24804Google Scholar

    [11]

    Wang Y Q, Wang R Z, Li Y J, Zhang Y F, Zhu M K., Wang B B, Yan H 2013 Cryst. Eng. Comm 15 1626Google Scholar

    [12]

    Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H, Wang R Z 2015 Sci. Rep. 5 17692Google Scholar

    [13]

    Jacobs B W, Crimp M A, McElroy K, Ayres V M 2008 Nano Lett. 8 4353Google Scholar

    [14]

    Chang K W, Wu J J 2002 J. Phys. Chem. B 106 7796Google Scholar

    [15]

    Stamplecoskie K G, Ju L, Farvid S S, Radovanovic P V 2008 Nano Lett. 8 2674Google Scholar

    [16]

    Li C, Bando Y, Golberg D 2010 ACS Nano 4 2422Google Scholar

    [17]

    赵军伟, 张跃飞, 宋雪梅, 严辉, 王如志 2014 63 117702Google Scholar

    Zhao J W, Zhang Y F, Song X M, Yan H, Wang R Z 2014 Acta Phys. Sin. 63 117702Google Scholar

    [18]

    Schiaber Z D, Calabrese G, Kong X, Trampert A, Jenichen B, de Silva J HD, Geelhaar L, Brandt O, Fermandez-Garrido S 2017 Nano Lett. 17 63Google Scholar

    [19]

    Choi S, Song H G, Yoo Y S, Lee C, Woo K Y, Lee E, Roh S D, Cho Y H 2018 ACS Photonics 5 2825Google Scholar

    [20]

    Feng X Y, Wang R Z, Liang Q, Ji Y H, Yang M Q 2019 Cryst. Growth Des. 19 2687Google Scholar

    [21]

    Wei X F, Shi F 2011 Appl. Surf. Sci. 257 9931Google Scholar

    [22]

    Shen L H, Cheng T M, Wu L J, Li X G, Cui Q L 2008 J. Alloys Compd. 465 562Google Scholar

    [23]

    Ramesh C, Tyagi P, Bhattacharyya B, Husale S, Maurya K K, Kumar M S, Kushvaha S S 2019 J. Alloys Compd. 770 572Google Scholar

    [24]

    Purushothaman V, Ramakrishnan V, Jeganathan K 2012 Cryst. Eng. Comm. 14 8390Google Scholar

    [25]

    Purushothaman V, Ramakrishnan V, Jeganathan K 2012 RSC Adv. 2 4802Google Scholar

    [26]

    Li Y, Wang W L, Li X C, Huang L G, Lin Z T, Zheng Y L, Chen X F, Li G Q 2019 J. Alloys Compd. 771 1000Google Scholar

    [27]

    Wei P C, Chen L C, Chen K H 2014 J. Appl. Phys. 116 124301Google Scholar

    [28]

    Wu C, Yu J D, E Y X, Luo Y, Hao Z B, Wang J, Wang L, Sun C Z, Xiong B, Han Y J, Li H T 2016 Cryst. Growth Des. 16 5023Google Scholar

    [29]

    Xian Y L, Huang S J, Zheng Z Y, Fan B F, Wu Z S, Jiang H, Wang G 2011 J. Cryst. Growth 325 32Google Scholar

    [30]

    Matoussi A, Nasr F B, Boufaden T, Salh R, Fakhfakh Z, Guermazi S, ElJani B, Fitting H J 2010 J. Lumin. 130 399Google Scholar

    [31]

    Sun R, Wang G G, Peng Z C 2018 Mater. Lett. 217 288Google Scholar

  • [1] 苑汇帛, 李林, 曾丽娜, 张晶, 李再金, 曲轶, 杨小天, 迟耀丹, 马晓辉, 刘国军. 金辅助催化方法制备GaAs和GaAs/InGaAs纳米线结构的形貌表征及生长机理研究.  , 2018, 67(18): 188101. doi: 10.7498/aps.67.20180220
    [2] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件.  , 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [3] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨.  , 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [4] 赵军伟, 张跃飞, 宋雪梅, 严辉, 王如志. 无氨法制备GaN纳米线及其光电性能研究.  , 2014, 63(11): 117702. doi: 10.7498/aps.63.117702
    [5] 何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强. 溶胶凝胶制备氧化钒薄膜的生长机理及光电特性.  , 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [6] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响.  , 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [7] 贾曦, 刘爱萍, 刘洋溢, 唐为华, 王君伟. SnO2微纳米材料的合成及其生长机理研究.  , 2009, 58(4): 2572-2577. doi: 10.7498/aps.58.2572
    [8] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响.  , 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [9] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理.  , 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [10] 张永炬, 余森江, 葛洪良, 邬良能, 崔玉建. 硅油基底表面铁薄膜的生长机理及表面有序结构.  , 2006, 55(10): 5444-5450. doi: 10.7498/aps.55.5444
    [11] 李振华, 王琴妹, 王 淼. 金属铈催化剂对单壁纳米碳管生长和结构的影响.  , 2005, 54(5): 2158-2161. doi: 10.7498/aps.54.2158
    [12] 刘仕锋, 秦国刚, 尤力平, 张纪才, 傅竹西, 戴 伦. 在双热舟化学气相沉积系统中通过掺In技术生长GaN纳米线和纳米锥.  , 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [13] 李红轩, 徐 洮, 陈建敏, 周惠娣, 刘惠文. 射频功率对类金刚石薄膜结构和性能的影响.  , 2005, 54(4): 1885-1889. doi: 10.7498/aps.54.1885
    [14] 顾伟超, 沈德久, 王玉林, 陈光良, 冯文然, 张谷令, 刘赤子, 杨思泽. 电解等离子体法制备Al2O3陶瓷层及其特性研究.  , 2005, 54(7): 3263-3267. doi: 10.7498/aps.54.3263
    [15] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼.  , 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [16] 王 淼, 李振华, 竹川仁士, 齐藤弥八. 利用微波等离子体增强化学气相沉积法定向生长纳米碳管的研究.  , 2004, 53(3): 888-890. doi: 10.7498/aps.53.888
    [17] 彭英才, 池田弥央, 宫崎诚一. Si纳米量子点的LPCVD自组织化形成及其生长机理研究.  , 2003, 52(12): 3108-3113. doi: 10.7498/aps.52.3108
    [18] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究.  , 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [19] 王引书, 孙萍, 丁硕, 罗旭辉, 李娜, 王若桢. 玻璃中CdSeS纳米晶体的生长及其性能.  , 2002, 51(12): 2892-2895. doi: 10.7498/aps.51.2892
    [20] 胡颖. 微波等离子体化学气相沉积方法在Si衬底上生长SiC纳米线.  , 2001, 50(12): 2452-2455. doi: 10.7498/aps.50.2452
计量
  • 文章访问数:  9166
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-19
  • 修回日期:  2020-02-07
  • 刊出日期:  2020-04-20

/

返回文章
返回
Baidu
map