-
针对低强度射线成像, 自主研制了一种像元为0.1 mm高探测效率的液闪阵列屏. 为此, 基于倾斜刀口边缘响应的测量原理, 建立了理论模拟方法和实验研究方法, 对该液闪阵列屏开展了空间分辨性能研究. 通过理论模拟, 给出了液闪阵列屏在14 MeV中子和1.25 MeV 伽马射线激发下的调制传递函数, 并与像元为0.1, 0.3和0.5 mm的闪烁纤维阵列屏进行了理论对比. 在60Co伽马射线源上, 对液闪阵列屏和像元为0.3和0.5 mm的两种国产闪烁纤维阵列屏进行了调制传递函数实测研究. 理论模拟和实验结果一致, 均表明液闪阵列的空间特性优于闪烁纤维阵列屏, 而且具有更好的均匀性, 对1.25 MeV伽马, 空间分辨接近0.9 lp/mm, 而其他两种纤维阵列屏仅达到0.5 lp/mm, 对于14 MeV中子, 液闪阵列屏的空间分辨可达到1.8 lp/mm.Scintillating array image plates are allowed high resolution through a thicker detector which increases quantum efficiency without degrading the imaging resolution substantially. Due to limitations imposed by process capability, scintillator fiber array with pixel diameter less than 0.2 mm is hardly manufactured to improve performance. Therefore, a liquid scintillator capillary array with 0.1 mm pixel is developed to improve the detection efficiency and spatial resolution of image plate for low intensity radiation imaging. Its performances are studied and tested by simulation and experiment, and are compared with those of scintillating fiber array. Especially in order to gain high fidelity representation of modulation transfer function of the array image plate, a method of simulating and measuring the slanted knife edge response and an iterative algorithm are introduced. For 14 MeV neutron and 1.25 MeV gamma, the slanted knife edge responses of these array image plates with pixel dimensions in a range from 0.1 mm to 0.5 mm are respectively simulated by MCNPx program and the modulation transfer function (MTF) are obtained. The simulation results show that compared with scintillating fiber array, the liquid scintillator capillaries array has an obvious merit in spatial resolution because of greater stopping power for secondary charged particle in the capillary quartz glass wall with 0.02 mm in thickness. Its ultimate resolution can reach to 1.8 lp/mm for 14 MeV neutron by simulation. At the 4000 Ci 60Co facility, a 5-cm-thick tungsten bar, one side of which has a curvature of 0.1 radian to minimize the misalignment effect, is made a knife edge. The MTF of the scintillating fiber array with 0.3 mm and 0.5 mm pixel and newly developed liquid scintillator capillary array is measured through this tungsten knife edge. Experimental measurement results have also verified that the liquid scintillator capillary array performs well in spatial resolution and luminescent uniformity for 1.25 MeV gamma. The ultimate spatial resolution, 0.9 lp/mm is gained, and those of other scintillating fiber arrays are all less than 0.5 lp/mm. Moreover, experimental test validates the simulating method and simulated results, although the measured value is slight less than the simulated value because of the effect of dimension of 60Co source.
-
Keywords:
- novel liquid scintillator capillary array /
- sloping edge spread function /
- modulation transfer function /
- radiation imaging
[1] Ress D, Lerche R A, Ellis R J, Heaton G W, Lehr E 1995 Rev. Sci. Instrum. 66 4943
[2] Disdier L, Lerche R A, Bourgade J L, Glebov V Y 2004 Rev. Sci. Instrum. 75 2134Google Scholar
[3] Caillaud T, Landoas O, Briat M, Rossé B, Thfoin I, Philippe F, Casner A, Bourgade J L, Disdier L, Glebov V Y, Marshall F J 2012 Rev. Sci. Instrum. 83 10E131Google Scholar
[4] Disdier L, Rouyer A, Wilson D C, Fedotoff A, Stoeckl C, BourgadeJ L, Glebov V Y, Garconnet J P, Seka W 2002 Nucl. Instrum. Meth. A 489 496Google Scholar
[5] Klir D, Shishlov A V, Kokshenev V A, Kubes P, Labetsky A Y, Rezac K, Cikhardt J, Fursov F I, Kovalchuk B M, Kravarik J, Kurmaev N E, Ratakhin N A, Sila O, Stodulka J 2013 Plasma Phys. Controlled Fusion 55 85012Google Scholar
[6] 章法强, 李正宏, 杨建伦, 叶凡, 王真, 夏广新, 应纯同, 刘广均 2007 中国科学: 技术科学 37 569Google Scholar
Zhang F Q, Li Z H, Yang J L, Ye F, Wang Z, Xia G, Ying C T, Liu G J 2007 Sci. Chin. Tech. Sci. 37 569Google Scholar
[7] Melek Z 2015 Ph. D. Dissertation (Australia Wollongong: University of Wollongong)
[8] 章法强, 杨建伦, 李正宏, 叶凡, 徐荣昆 2009 58 1316Google Scholar
Zhang F Q, Yang J L, Li Z H, Ye F, Xu R K 2009 Acta Phys. Sin. 58 1316Google Scholar
[9] 马继明, 王奎禄, 宋顾周, 张建奇, 王群书 2011 核电子学与探测技术 31 473Google Scholar
Ma J M, Wang K L, Song G Z, Zhang J Q, Wang Q S 2011 Nuclear Electronics & Detection Technology 31 473Google Scholar
[10] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩 2017 66 062401Google Scholar
Yao Z M, Duan B J, Song G Z, Yan W P, Ma J M, Han C C, Song Y 2017 Acta Phys. Sin. 66 062401Google Scholar
[11] Daniel A L, Camille B, Gary P G, Bradford H B, Brian W M, David F, Lars R F 2011 SPIE Int. Soc. Opt. Eng. 8144 814407Google Scholar
[12] Thfoin I, Landoas O, Caillaud T, Disdier L, Bourgade J L, Rosse B, Sangster T C, Glebov V Y 2009 ANIMMA First International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications New York, United States, June 7−10, 2009 p1
[13] Daniel A L, Bradford H B, Gary P G 2014 Proceedings Volume 9211, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion Ⅲ 921105 San Diego, California, United States, September 23, 2014 p1
[14] Simpson R, Cutler T E, Danly C R, Espy M A, Goglio J H, Hunter J F, Madden A C, Mayo D R, Merrill F E, Nelson R O, Swift A L, Wilde C H R 2016 Rev. Sci. Instrum 87 11D830-1
[15] Merrill F E, Bower D, Buckles R, Clark D D, Danly C R, Drury O B, Dzenitis J M, Fatherley V E 2012 Rev. Sci. Instrum 83 10D317-1
[16] Grim G P, Day R D, Clark D D, Fatherley V E, Finch J P, Garcia F P, Jaramillo S A, Montoya A J, Morgan G L Oertel J A, Ortiz T A, Payton J R, Pazuchanics P D, Schmidt D W, Valdez A C, Wilde C H, Wilke M D 2007 Proceedings Volume 6707, Penetrating Radiation Systems and Applications VⅢ 67070 H San Diego, California, United States, September 28, 2007 p1
[17] 张凤娜 2016 博士学位论文 (西安: 西安交通大学)
Zhang F N 2016 Ph. D. Dissertation (Xi’an: Xi’an Jiao Tong University) (in Chinese)
[18] Danly C R, Sjue S, Wilde C H, Merrill F E, Haight R C 2014 Rev. Sci. Instrum. 85 11E607Google Scholar
[19] Jia Q G, Hu H S, Zhang F N, Zhang T K, Wei L, Zhan Y P, Liu Z H 2013 IEEE Trans. Nucl. Sci. 60 4727Google Scholar
[20] Christopher D C, Richard C S 2008 J. Opt. Soc. Am. A 25 159Google Scholar
[21] 王培伟 2003 硕士学位论文 (西安: 西北核技术研究所)
Wang P W 2013 M. S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese)
[22] Cao X H, Huang H K, Lou L 2000 Proceedings 3977, Medical Imaging 2000: Physics of Medical Imaging San Diego, CA, United States, April 25, 2000 p580
[23] Bai H Y, Wang Z M, Zhang LY, Lu Y, Jiang H Y, Chen J X, Zhang G H 2017 Nucl. Instrum. Meth. A 863 47Google Scholar
[24] Pino F, Stevanato L, Cester D, Nebbia G, Bohus L S, Viesti G 2014 Appl. Radiat. Isot. 89 79Google Scholar
-
图 2 矩形面源在阵列上的投影示意图 (a)面源投影内的阵列单元完全被辐照; (b), (c)投影边界处的阵列单元没有被完全辐照; (d)投影倾斜于阵列排布方向
Fig. 2. Projection sketch of surface source on the array: (a) The array cell at the boundary of projection area is fully irradiated; (b), (c) the array cell at the boundary of projection area is not fully irradiated; (d) edge of projection slants through the horizontal direction of the array.
图 6 新型液闪阵列屏与闪烁纤维屏的MTF理论模拟曲线 (a) 14 MeV中子激发下的MTF曲线; (b) 1.25 MeV伽马激发下的MTF曲线
Fig. 6. MTF curves of the liquid scintillator capillary array and scintillating fiber array by simulation: (a) MTF curves of the three array image plates with 14 MeV neutron irradiation; (b) MTF curves of the three array image plates with 1.25 MeV Gamma irradiation.
图 9 阵列屏对1.25 MeV伽马射线的MTF实测与模拟结果 (a) LCA液闪阵列屏; (b) GSFA闪烁纤维阵列屏; (c) BSFA闪烁纤维阵列屏
Fig. 9. Comparison of MTF curves measured and simulated for the three array image plates under 1.25 MeV Gamma ray: (a) LCA liquid scintillator capillaries array; (b) GSFA scintillating fiber array; (c) BSFA scintillating fiber array.
表 1 三种阵列屏的基本结构尺寸和参数
Table 1. Geometry dimension and performance parameter of three array imaging plate.
阵列图像屏 GSFA BSFA LCA 像元尺寸/mm 0.3 0.5 0.1 中心波长/nm 492 432 426 衰减时间/ns 2.7 2.7 < 3.5 厚度/mm 50 50 60 闪烁材料 BCF20 BCF10 EJ309 -
[1] Ress D, Lerche R A, Ellis R J, Heaton G W, Lehr E 1995 Rev. Sci. Instrum. 66 4943
[2] Disdier L, Lerche R A, Bourgade J L, Glebov V Y 2004 Rev. Sci. Instrum. 75 2134Google Scholar
[3] Caillaud T, Landoas O, Briat M, Rossé B, Thfoin I, Philippe F, Casner A, Bourgade J L, Disdier L, Glebov V Y, Marshall F J 2012 Rev. Sci. Instrum. 83 10E131Google Scholar
[4] Disdier L, Rouyer A, Wilson D C, Fedotoff A, Stoeckl C, BourgadeJ L, Glebov V Y, Garconnet J P, Seka W 2002 Nucl. Instrum. Meth. A 489 496Google Scholar
[5] Klir D, Shishlov A V, Kokshenev V A, Kubes P, Labetsky A Y, Rezac K, Cikhardt J, Fursov F I, Kovalchuk B M, Kravarik J, Kurmaev N E, Ratakhin N A, Sila O, Stodulka J 2013 Plasma Phys. Controlled Fusion 55 85012Google Scholar
[6] 章法强, 李正宏, 杨建伦, 叶凡, 王真, 夏广新, 应纯同, 刘广均 2007 中国科学: 技术科学 37 569Google Scholar
Zhang F Q, Li Z H, Yang J L, Ye F, Wang Z, Xia G, Ying C T, Liu G J 2007 Sci. Chin. Tech. Sci. 37 569Google Scholar
[7] Melek Z 2015 Ph. D. Dissertation (Australia Wollongong: University of Wollongong)
[8] 章法强, 杨建伦, 李正宏, 叶凡, 徐荣昆 2009 58 1316Google Scholar
Zhang F Q, Yang J L, Li Z H, Ye F, Xu R K 2009 Acta Phys. Sin. 58 1316Google Scholar
[9] 马继明, 王奎禄, 宋顾周, 张建奇, 王群书 2011 核电子学与探测技术 31 473Google Scholar
Ma J M, Wang K L, Song G Z, Zhang J Q, Wang Q S 2011 Nuclear Electronics & Detection Technology 31 473Google Scholar
[10] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩 2017 66 062401Google Scholar
Yao Z M, Duan B J, Song G Z, Yan W P, Ma J M, Han C C, Song Y 2017 Acta Phys. Sin. 66 062401Google Scholar
[11] Daniel A L, Camille B, Gary P G, Bradford H B, Brian W M, David F, Lars R F 2011 SPIE Int. Soc. Opt. Eng. 8144 814407Google Scholar
[12] Thfoin I, Landoas O, Caillaud T, Disdier L, Bourgade J L, Rosse B, Sangster T C, Glebov V Y 2009 ANIMMA First International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications New York, United States, June 7−10, 2009 p1
[13] Daniel A L, Bradford H B, Gary P G 2014 Proceedings Volume 9211, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion Ⅲ 921105 San Diego, California, United States, September 23, 2014 p1
[14] Simpson R, Cutler T E, Danly C R, Espy M A, Goglio J H, Hunter J F, Madden A C, Mayo D R, Merrill F E, Nelson R O, Swift A L, Wilde C H R 2016 Rev. Sci. Instrum 87 11D830-1
[15] Merrill F E, Bower D, Buckles R, Clark D D, Danly C R, Drury O B, Dzenitis J M, Fatherley V E 2012 Rev. Sci. Instrum 83 10D317-1
[16] Grim G P, Day R D, Clark D D, Fatherley V E, Finch J P, Garcia F P, Jaramillo S A, Montoya A J, Morgan G L Oertel J A, Ortiz T A, Payton J R, Pazuchanics P D, Schmidt D W, Valdez A C, Wilde C H, Wilke M D 2007 Proceedings Volume 6707, Penetrating Radiation Systems and Applications VⅢ 67070 H San Diego, California, United States, September 28, 2007 p1
[17] 张凤娜 2016 博士学位论文 (西安: 西安交通大学)
Zhang F N 2016 Ph. D. Dissertation (Xi’an: Xi’an Jiao Tong University) (in Chinese)
[18] Danly C R, Sjue S, Wilde C H, Merrill F E, Haight R C 2014 Rev. Sci. Instrum. 85 11E607Google Scholar
[19] Jia Q G, Hu H S, Zhang F N, Zhang T K, Wei L, Zhan Y P, Liu Z H 2013 IEEE Trans. Nucl. Sci. 60 4727Google Scholar
[20] Christopher D C, Richard C S 2008 J. Opt. Soc. Am. A 25 159Google Scholar
[21] 王培伟 2003 硕士学位论文 (西安: 西北核技术研究所)
Wang P W 2013 M. S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese)
[22] Cao X H, Huang H K, Lou L 2000 Proceedings 3977, Medical Imaging 2000: Physics of Medical Imaging San Diego, CA, United States, April 25, 2000 p580
[23] Bai H Y, Wang Z M, Zhang LY, Lu Y, Jiang H Y, Chen J X, Zhang G H 2017 Nucl. Instrum. Meth. A 863 47Google Scholar
[24] Pino F, Stevanato L, Cester D, Nebbia G, Bohus L S, Viesti G 2014 Appl. Radiat. Isot. 89 79Google Scholar
计量
- 文章访问数: 7136
- PDF下载量: 70
- 被引次数: 0