-
Boussinesq方程是流体力学等领域一个非常重要的方程. 本文推导了Boussinesq方程的Lax对. 借助于截断Painlevé展开, 得到了Boussinesq方程的自Bäcklund变换, 以及Boussinesq方程和Schwarzian形式的Boussinesq方程之间的Bäcklund变换. 探讨了Boussinesq方程的非局域对称, 研究了Boussinesq方程的单参数群变换和单参数子群不变解. 运用Riccati展开法研究了Boussinesq方程, 证明Boussinesq方程具有Riccati展开相容性, 得到了Boussinesq方程的孤立波-椭圆余弦波解.
-
关键词:
- Boussinesq方程 /
- lax对 /
- Bäcklund变换 /
- Riccati展开
The Boussinesq equation is a very important equation in fluid mechanics and some other disciplines. A Lax pair of the Boussinesq equation is proposed. With the help of the truncated Painlevé expansion, auto-Bäcklund transformation of the Boussinesq equation and Bäcklund transformation between the Boussinesq equation and the Schwarzian Boussinesq equation are demonstrated. Nonlocal symmetries of the Boussinesq equation are discussed. One-parameter subgroup invariant solutions and one-parameter group transformations are obtained. The consistent Riccati expansion solvability of the Boussinesq equation is proved and some interaction structures between soliton-cnoidal waves are obtained by consistent Riccati expansion.[1] Boussinesq J 1872 J. Math. Pures Appl. 17 55
[2] Ursell F 1953 Proc. Cambridge Philos. Soc. 49 685Google Scholar
[3] Daripa P 1998 J. Comput. Appl. Math. 100 161Google Scholar
[4] Guo B, Gao Z, Lin J 2016 Commun. Theor. Phys. 64 589
[5] Liu W 2009 Z. Naturforschung A 64 709Google Scholar
[6] Benny D J, Luke J C 1964 J. Math. Phys. 43 309Google Scholar
[7] Himonas A A, Mantzavinos D 2015 J. Differ. Equations 258 3107Google Scholar
[8] Li S, Zhang W, Bu X 2017 J. Math. Anal. Appl. 449 96Google Scholar
[9] Weiss J 1983 J. Math. Phys. 24 1405Google Scholar
[10] Guo B X, Lin J 2013 Int. J. Mod. Phys. B 30 1640013
[11] Guo B X, Gao Z J, Lin J 2016 Commun. Theor. Phys. 66 589Google Scholar
[12] Liu Y K, Li B 2016 Chin. J. Phys. 54 718Google Scholar
[13] Gao X N, Lou SY, Tang X Y 2013 J. High Energy Phys. 5 029
[14] Olver P J 1993 Applications of Lie Group to Differential Equations (2nd ed.) (New York: Springer) pp75–238
[15] Liu P, Zeng B Q, Ren B 2015 Commun. Theor. Phys. 63 413Google Scholar
[16] Liu Y K, Li B 2017 Chin. Phys. Lett. 34 010202Google Scholar
[17] Liu P, Zeng B Q, Deng B B, Yang J R 2015 AIP Adv. 5 087162Google Scholar
[18] Liu P, Wang Y X, Ren B, Li J H 2016 Commun. Theor. Phys. 66 595Google Scholar
[19] 焦小玉, 贾曼, 安红利 2019 68 140201Google Scholar
Jiao X Y, Jia M, An H L 2019 Acta Phys. Sin. 68 140201Google Scholar
[20] Lou S Y 2015 Stud. Appl. Math. 134 372Google Scholar
-
图 4 参数关系满足(48)式的碰撞波解(49)式的演化图. 自由参数为 {n = 0.4, a1 = 1, a2 = 1, a3 = 2.2, k1 = 1, k2 = –0.22, ω2 = 1, α = –400, β = 80}
Fig. 4. The interaction solution (49) with parameter satisfying Formula (48). The free parameters are chosen as {n = 0.4, a1 = 1, a2 = 1, a3 = 2.2, k1 = 1, k2 = –0.22, ω2 = 1, α = –400, β = 80}.
图 5 参数关系满足(48)式的碰撞波解(49)式. 自由参数为{n = 0.6, a1 = 2, a2 = 1, a3 = 4, k1 = 1, k2 = –0.12, ω2 = 0.1, α = –14, β = 6}
Fig. 5. The interaction solution (49) with parameter satisfying Formula (48). The free parameters are selected as {n = 0.6, a1 = 2, a2 = 1, a3 = 4, k1 = 1, k2 = –0.12, ω2 = 0.1, α = –14, β = 6}.
-
[1] Boussinesq J 1872 J. Math. Pures Appl. 17 55
[2] Ursell F 1953 Proc. Cambridge Philos. Soc. 49 685Google Scholar
[3] Daripa P 1998 J. Comput. Appl. Math. 100 161Google Scholar
[4] Guo B, Gao Z, Lin J 2016 Commun. Theor. Phys. 64 589
[5] Liu W 2009 Z. Naturforschung A 64 709Google Scholar
[6] Benny D J, Luke J C 1964 J. Math. Phys. 43 309Google Scholar
[7] Himonas A A, Mantzavinos D 2015 J. Differ. Equations 258 3107Google Scholar
[8] Li S, Zhang W, Bu X 2017 J. Math. Anal. Appl. 449 96Google Scholar
[9] Weiss J 1983 J. Math. Phys. 24 1405Google Scholar
[10] Guo B X, Lin J 2013 Int. J. Mod. Phys. B 30 1640013
[11] Guo B X, Gao Z J, Lin J 2016 Commun. Theor. Phys. 66 589Google Scholar
[12] Liu Y K, Li B 2016 Chin. J. Phys. 54 718Google Scholar
[13] Gao X N, Lou SY, Tang X Y 2013 J. High Energy Phys. 5 029
[14] Olver P J 1993 Applications of Lie Group to Differential Equations (2nd ed.) (New York: Springer) pp75–238
[15] Liu P, Zeng B Q, Ren B 2015 Commun. Theor. Phys. 63 413Google Scholar
[16] Liu Y K, Li B 2017 Chin. Phys. Lett. 34 010202Google Scholar
[17] Liu P, Zeng B Q, Deng B B, Yang J R 2015 AIP Adv. 5 087162Google Scholar
[18] Liu P, Wang Y X, Ren B, Li J H 2016 Commun. Theor. Phys. 66 595Google Scholar
[19] 焦小玉, 贾曼, 安红利 2019 68 140201Google Scholar
Jiao X Y, Jia M, An H L 2019 Acta Phys. Sin. 68 140201Google Scholar
[20] Lou S Y 2015 Stud. Appl. Math. 134 372Google Scholar
计量
- 文章访问数: 9622
- PDF下载量: 252
- 被引次数: 0