搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个可积的逆空时非局部Sasa-Satsuma方程

宋彩芹 朱佐农

引用本文:
Citation:

一个可积的逆空时非局部Sasa-Satsuma方程

宋彩芹, 朱佐农

An integrable reverse space-time nonlocal Sasa-Satsuma equation

Song Cai-Qin, Zhu Zuo-Nong
PDF
HTML
导出引用
  • 本文给出了一个可积的逆空时(逆空间-逆时间)非局部Sasa-Satsuma方程. 建立了这个方程的Darboux变换, 并且构造了这个逆空时非局部方程在零背景条件下的孤子解.
    In this paper, we introduce an integrable reverse space-time nonlocal Sasa-Satsuma equation. The Darboux transformation and soliton solutions for this nonlocal integrable equation are constructed.
      通信作者: 朱佐农, znzhu@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11671255, 11801367)资助的课题
      Corresponding author: Zhu Zuo-Nong, znzhu@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11671255, 11801367)
    [1]

    Sasa N, Satsuma J 1991 J. Phys. Soc. Jpn 60 409Google Scholar

    [2]

    Porsezian K, Nakkeeran K 1996 Phys. Rev. Lett 76 3955Google Scholar

    [3]

    Mihalache D, Torner L, Moldoveanu F, Panoiu N C, Truta N 1993 Phys. Rev. E 48 4699Google Scholar

    [4]

    Ghosh S, Kundu A, Nandy S 1999 J. Math. Phys. 40 1993Google Scholar

    [5]

    Li Y S, Han W T 2001 Chin. Ann. Math. 22B 171

    [6]

    Gilson C, Hietarinta J, Nimmo J, Ohta Y 2003 Phys. Rev. E 68 016614Google Scholar

    [7]

    Wright O C 2007 Chaos, Solitons Fractals 33 374

    [8]

    Nimmo J, Yilmaz H 2015 J. Phys. A. Math. Theor. 48 425202Google Scholar

    [9]

    Bandelow U, Akhmediev N 2012 Phys. Rev. E 86 026606Google Scholar

    [10]

    Li Z H, Li L, Tian H P, Zhou G S 2000 Phys. Rev. Lett. 84 4096Google Scholar

    [11]

    Ohta Y 2010 AIP Conference Proceeding 1212 114

    [12]

    Zhao L C, Li S C, Ling L M 2014 Phys. Rev. E 89 023210Google Scholar

    [13]

    Xu T, Li M, Li L 2015 Europhys. Lett. 109 30006Google Scholar

    [14]

    Liu Y K, Li B 2017 Chin. Phys. Lett. 34 010202Google Scholar

    [15]

    Ablowitz M J, Musslimani Z H 2013 Phys. Rev. Lett. 110 064105Google Scholar

    [16]

    Ablowitz M J, Musslimani Z H 2016 Stud. Appl. Math. 139 7

    [17]

    Ji J L, Zhu Z N 2017 Commun. Nonlinear Sci. Numer. Simul. 42 699Google Scholar

    [18]

    Lou S Y 2018 J. Math. Phys. 59 083507Google Scholar

    [19]

    Yang B, Yang J 2018 Stud. Appl. Math 140 178Google Scholar

    [20]

    Song C Q, Xiao D M, Zhu Z N 2017 J. Phys. Soc. Jpn. 86 054001Google Scholar

    [21]

    Rao J, Cheng Y, He J S 2017 Stud. Appl. Math. 139 568Google Scholar

    [22]

    Rao J, Cheng Y, Porsezian K, Mihalache S, He J S 2020 Physica D 401 132180Google Scholar

    [23]

    Ji J L, Zhu Z N 2017 J. Math. Anal. Appl. 453 973Google Scholar

    [24]

    Ma L Y, Zhu Z N 2016 J. Math. Phys. 57 083507Google Scholar

  • 图 1  可积的逆空时非局部Sasa-Satsuma方程(7)的孤子解 (a) α1 = α2 = β1 = β2 = $ \dfrac{\sqrt{2}}{2}, \lambda_1 = {\rm i}, \lambda_2 = -{\rm i}/2 $; (b) α1 = –α2 = β1 = –β2 = $ \dfrac{\sqrt{2}}{2}, \lambda_1 = 1+{\rm i}, \lambda_2 = 1-{\rm i} $; (c) α1 = β1 = 1, α2 = β2 = 0 $\lambda_2 = {\rm i}, \lambda_1 = \dfrac{1-\sqrt{2}}{1+\sqrt{2}}\lambda_2 $

    Fig. 1.  Soliton solutions of integrable reverse space-time nonlocal Sasa-Satsuma equation (7): (a) α1 = α2 = β1 = β2 = $ \dfrac{\sqrt{2}}{2}, \lambda_1 = {\rm i}, \lambda_2 = -{\rm i}/2 $; (b) α1 = –α2 = β1 = –β2 = $ \dfrac{\sqrt{2}}{2}, $ $\lambda_1 = 1+{\rm i}, \lambda_2 = 1-{\rm i} $; (c) α1 = β1 = 1, α2 = β2 = 0 $\lambda_2 = {\rm i}, \lambda_1 = \dfrac{1-\sqrt{2}}{1+\sqrt{2}}\lambda_2 $

    Baidu
  • [1]

    Sasa N, Satsuma J 1991 J. Phys. Soc. Jpn 60 409Google Scholar

    [2]

    Porsezian K, Nakkeeran K 1996 Phys. Rev. Lett 76 3955Google Scholar

    [3]

    Mihalache D, Torner L, Moldoveanu F, Panoiu N C, Truta N 1993 Phys. Rev. E 48 4699Google Scholar

    [4]

    Ghosh S, Kundu A, Nandy S 1999 J. Math. Phys. 40 1993Google Scholar

    [5]

    Li Y S, Han W T 2001 Chin. Ann. Math. 22B 171

    [6]

    Gilson C, Hietarinta J, Nimmo J, Ohta Y 2003 Phys. Rev. E 68 016614Google Scholar

    [7]

    Wright O C 2007 Chaos, Solitons Fractals 33 374

    [8]

    Nimmo J, Yilmaz H 2015 J. Phys. A. Math. Theor. 48 425202Google Scholar

    [9]

    Bandelow U, Akhmediev N 2012 Phys. Rev. E 86 026606Google Scholar

    [10]

    Li Z H, Li L, Tian H P, Zhou G S 2000 Phys. Rev. Lett. 84 4096Google Scholar

    [11]

    Ohta Y 2010 AIP Conference Proceeding 1212 114

    [12]

    Zhao L C, Li S C, Ling L M 2014 Phys. Rev. E 89 023210Google Scholar

    [13]

    Xu T, Li M, Li L 2015 Europhys. Lett. 109 30006Google Scholar

    [14]

    Liu Y K, Li B 2017 Chin. Phys. Lett. 34 010202Google Scholar

    [15]

    Ablowitz M J, Musslimani Z H 2013 Phys. Rev. Lett. 110 064105Google Scholar

    [16]

    Ablowitz M J, Musslimani Z H 2016 Stud. Appl. Math. 139 7

    [17]

    Ji J L, Zhu Z N 2017 Commun. Nonlinear Sci. Numer. Simul. 42 699Google Scholar

    [18]

    Lou S Y 2018 J. Math. Phys. 59 083507Google Scholar

    [19]

    Yang B, Yang J 2018 Stud. Appl. Math 140 178Google Scholar

    [20]

    Song C Q, Xiao D M, Zhu Z N 2017 J. Phys. Soc. Jpn. 86 054001Google Scholar

    [21]

    Rao J, Cheng Y, He J S 2017 Stud. Appl. Math. 139 568Google Scholar

    [22]

    Rao J, Cheng Y, Porsezian K, Mihalache S, He J S 2020 Physica D 401 132180Google Scholar

    [23]

    Ji J L, Zhu Z N 2017 J. Math. Anal. Appl. 453 973Google Scholar

    [24]

    Ma L Y, Zhu Z N 2016 J. Math. Phys. 57 083507Google Scholar

计量
  • 文章访问数:  8763
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-14
  • 修回日期:  2019-12-21
  • 上网日期:  2019-12-24
  • 刊出日期:  2020-01-05

/

返回文章
返回
Baidu
map