-
利用符号计算软件Maple,在一个新的广义的Riccati方程有理展开法的帮助下,得到了关于复合的KdV系统及广义的KdV-Burgers系统的几个新的更广义类型的精确解. 该方法还可被应用到其他非线性发展方程中去.
-
关键词:
- 新的广义的Riccati方程有理展开法 /
- 复合的KdV系统 /
- 广义的KdV-Burgers系统 /
- 符号计算
With the aid of symbolic computation system Maple, several new kinds of generalized exact solutions for the compound KdV system and extended KdV-Burgers system with nonlinear terms of any order are obtained by using a new generalize Riccati equation rational expansion method. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.-
Keywords:
- generalized Riccati equation rational expansion method /
- compound KdV system with nonlinear terms of any order /
- extended KdV-Burgers system with nonlinear terms of any order /
- symbolic computation
[1] [1]Ablowitz M J,Clarkson P A 1991 Solitons, nonlinear evolution equations and inverse scattering (New York: Cambridge University Press)
[2] [2]Wadati M. J 1972 Phys. Soc. Jpn. 32 1681
[3] [3]Hirota R 1971 Phys. Rev. Lett. 27 1192
[4] [4]Lou S Y 2000 Phys. Lett. A 277 94
[5] [5]Wang M L 1995 Phys. Lett. A 199 169
[6] [6]Parkes E J,Duffy B R 1996 Comp. Phys. Commun. 98 288 Parkes E J,Duffy B R 1997 Phys. Lett. A 229 217
[7] [7]Khater A H,Malfliet W, Callebaut D K, Kamel E S 2002 Chaos, Solitons and Fractals 14 513
[8] [8]Fan E G 2000 Phys. Lett. A 277 212 Fan E G 2001 Phys. Lett. A 282 18
[9] [9]Elwakil S A,El-labany S K,Zahran M A,Sabry R 2002 Phys.Lett. A 299 179
[10] ]Gao Y T,Tian B 2001 Comp. Phys.Commun. 133 158
[11] ]Wang Q,Chen Y,Zhang H Q 2005 Phys. Lett. A 340 411
[12] ]Wang J,Zhang X L,Song L N,Zhang H Q 2006 Appl.Math. Comput.182 1330
[13] ]Li Z B,Liu Y P 2002 Comp. Phys. Commun. 148 256
[14] ]Yan Z Y,Zhang H Q 1999 Phys. Lett. A 252 291
[15] ]Li B,Chen Y,Zhang H Q 2003 Chaos Solitons and Fractals 15 647
[16] ]Xie F D,Chen J,Lü Z S 2005 Commun. Theor. Phys. 43 585
[17] ]Song L N,Zhang H Q 2005 Commun. Theor. Phys. 44 783
[18] ]Wadati M J 1975 Phys. Soc. Jpn. 38 673, 681
[19] ]Pego R L,Smereka P,Weinstein MI 1993 Physica D 67 45
[20] ]Dey B. 1986 J. Phys. A 19 19
[21] ]Coffey M W,SIAM J 1990 Appl. Math. 50 1580
[22] ]Zhang W G,Chang Q S,Jiang B G 2002 Chaos Solitons and Fractals 13 311
[23] ]Liu S K,Fu Z T,Liu S D,Zhao Q 2002 Acta Phys. Sin. 51 1923(in Chinese) [刘式适、付遵涛、刘式达、赵强 2002 51 1923]
[24] ]Lu D C,Hong B J,Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese) [卢殿臣、烘宝剑、田立新 2006 55 5617]
[25] ]Pan J T,Gong,L X 2007 Acta Phys. Sin. 56 5585 (in Chinese) [潘军廷、龚伦训 2007 56 5585]
[26] ]Shi Y R,Guo P,Lü K P,Duan W S 2004 Acta Phys. Sin. 53 3265 (in Chinese)[石玉仁、郭 鹏、吕克璞、段文山 2004 53 3265]
-
[1] [1]Ablowitz M J,Clarkson P A 1991 Solitons, nonlinear evolution equations and inverse scattering (New York: Cambridge University Press)
[2] [2]Wadati M. J 1972 Phys. Soc. Jpn. 32 1681
[3] [3]Hirota R 1971 Phys. Rev. Lett. 27 1192
[4] [4]Lou S Y 2000 Phys. Lett. A 277 94
[5] [5]Wang M L 1995 Phys. Lett. A 199 169
[6] [6]Parkes E J,Duffy B R 1996 Comp. Phys. Commun. 98 288 Parkes E J,Duffy B R 1997 Phys. Lett. A 229 217
[7] [7]Khater A H,Malfliet W, Callebaut D K, Kamel E S 2002 Chaos, Solitons and Fractals 14 513
[8] [8]Fan E G 2000 Phys. Lett. A 277 212 Fan E G 2001 Phys. Lett. A 282 18
[9] [9]Elwakil S A,El-labany S K,Zahran M A,Sabry R 2002 Phys.Lett. A 299 179
[10] ]Gao Y T,Tian B 2001 Comp. Phys.Commun. 133 158
[11] ]Wang Q,Chen Y,Zhang H Q 2005 Phys. Lett. A 340 411
[12] ]Wang J,Zhang X L,Song L N,Zhang H Q 2006 Appl.Math. Comput.182 1330
[13] ]Li Z B,Liu Y P 2002 Comp. Phys. Commun. 148 256
[14] ]Yan Z Y,Zhang H Q 1999 Phys. Lett. A 252 291
[15] ]Li B,Chen Y,Zhang H Q 2003 Chaos Solitons and Fractals 15 647
[16] ]Xie F D,Chen J,Lü Z S 2005 Commun. Theor. Phys. 43 585
[17] ]Song L N,Zhang H Q 2005 Commun. Theor. Phys. 44 783
[18] ]Wadati M J 1975 Phys. Soc. Jpn. 38 673, 681
[19] ]Pego R L,Smereka P,Weinstein MI 1993 Physica D 67 45
[20] ]Dey B. 1986 J. Phys. A 19 19
[21] ]Coffey M W,SIAM J 1990 Appl. Math. 50 1580
[22] ]Zhang W G,Chang Q S,Jiang B G 2002 Chaos Solitons and Fractals 13 311
[23] ]Liu S K,Fu Z T,Liu S D,Zhao Q 2002 Acta Phys. Sin. 51 1923(in Chinese) [刘式适、付遵涛、刘式达、赵强 2002 51 1923]
[24] ]Lu D C,Hong B J,Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese) [卢殿臣、烘宝剑、田立新 2006 55 5617]
[25] ]Pan J T,Gong,L X 2007 Acta Phys. Sin. 56 5585 (in Chinese) [潘军廷、龚伦训 2007 56 5585]
[26] ]Shi Y R,Guo P,Lü K P,Duan W S 2004 Acta Phys. Sin. 53 3265 (in Chinese)[石玉仁、郭 鹏、吕克璞、段文山 2004 53 3265]
计量
- 文章访问数: 8257
- PDF下载量: 784
- 被引次数: 0