搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤激光器中包层功率剥离器散热性能的优化

夏情感 肖文波 李军华 金鑫 叶国敏 吴华明 马国红

引用本文:
Citation:

光纤激光器中包层功率剥离器散热性能的优化

夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红

Optimization of thermal performance of cladding power stripper in fiber laser

Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong
PDF
HTML
导出引用
  • 光纤激光器系统中的包层功率剥离器在去除残余抽运光和高阶激光时, 由于光热转换会产生大量的热能, 所以将热能高效的耗散成为当前的研究热点. 本文对国内外现有的五种剥离器进行了仿真研究与对比, 发现用高折胶法制作剥离器时, 改变填胶孔的形状, 可以有效地增大热源与传热介质间的表面积-体积比, 从而降低剥离器工作时的温度峰谷值; 还发现将高折胶法和酸腐蚀法结合制备粗细不均匀的两段式光纤包层结构, 可以提升剥离器的热分布均匀性. 根据上述发现, 提出了一种新颖的剥离器结构并进行了热效应研究. 结果表明: 包层功率为150 W时, 该剥离器的温度峰值为298 K, 温度谷值为293 K, 温差为5 K; 相比于上述五种剥离器, 其温度峰值最多降低了11.3%, 温度谷值最多降低了8.4%, 温差最多降低了87.5%, 证明了该剥离器能有效抑制温升及具有热分布均匀性.
    In the process of eliminating the residual pump light and high-order laser light, the cladding power stripper (CPS) generates abundant heat, which can affect the performance of the fiber laser system due to the photothermal conversion. Hence the efficient dissipation of thermal energy becomes a current research focus. In this paper, the five kinds of existing CPSs are simulated and compared with the results in the literature. It is found that the surface-volume ratio between the heat source and the heat transfer medium can be effectively increased by changing the shape of the polymer filling hole when the CPS is made by the high refractive index polymer method, thus reducing the temperature peak and valley value of the CPS. Besides, the heat distribution uniformity of CPS can be improved by combining the high refractive index polymer method with the acid corrosion method to prepare the two-section fiber cladding structure with uneven thickness. According to the above results, a novel CPS structure is proposed and its thermal effect is studied. The results show that when the cladding light power is 150 W, the temperature peak value of the CPS is 298 K, the temperature valley value is 293 K, and the temperature difference is 5 K. Comparing with the above five CPSs, the peak temperature is reduced by up to 11.3%, and the valley temperature is reduced by up to 8.4%, the temperature difference is reduced by up to 87.5%, which proves that the novel CPS structure can effectively suppress the temperature rising and have excellent heat distribution uniformity.
      通信作者: 肖文波, xiaowenbo1570@163.com
    • 基金项目: 航空科学基金项目(批准号: 2017ZC56003)、江西省图像处理与模式识别重点实验室开放基金(批准号: ET201908119)、江西省优势科技创新团队项目(批准号: 20181BCB24008)、南昌航空大学研究生创新专项基金(批准号: YC2019-S348)和无损检测技术教育部重点实验室开放基金(批准号: EW201980090)资助的课题
      Corresponding author: Xiao Wen-Bo, xiaowenbo1570@163.com
    • Funds: Project supported by Aeronautical Science Foundation of China (Grant No. 2017ZC56003), the Key Laboratory of Image Processing and Pattern Recognition Foundation of the Jiangxi Province of China(Grant No.ET201908119), Advantage Science and Technology Innovation Team Foundation of the Jiangxi Province of China(Grant No.20181BCB24008), Graduate Innovation Foundation of Nanchang HangKong University of China(Grant No.YC2019-S348), the Open Fund of the Key Laboratory of Nondestructive Testing of Ministry of Education of Nanchang HangKong University of China(Grant No.EW201980090)
    [1]

    Nilsson J, Payne D N 2011 Science 332 921Google Scholar

    [2]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [3]

    张志强 2012 博士学位论文 (北京: 北京邮电大学)

    Zhang Z Q 2012 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [4]

    赵水, 段云锋, 王强, 张秀娟, 邓明发 2015 激光与红外 45 749

    Zhao S, Duan Y F, Wang Q, Zhang X J, Deng M F 2015 Laser & Infrared 45 749

    [5]

    郭良, 谌鸿伟, 王泽锋, 侯静, 陈金宝 2014 激光与光电子学进展 51 020602

    Guo L, Chen H W, Wang Z F, Hou J, Chen J B 2014 Laser & Optoelectronics Progress 51 020602

    [6]

    Huang Z H, Liang X B, Li C Y, Lin H H, Li Q, Wang J J, Jing F 2016 Appl. Optics 55 297Google Scholar

    [7]

    Xiao Y, Brunet F, Kanskar M, Wetter A, Holehouse N 2012 Opt. Express 20 3296Google Scholar

    [8]

    龚凯 2019 硕士学位论文 (广州: 广东工业大学)

    Gong K 2019 M. S. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)

    [9]

    邱禹力 2016 硕士学位论文 (武汉: 华中科技大学)

    Qiu Y L 2016 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [10]

    李杰雄, 李波, 朱广志, 岳建堡, 王智用 2017 激光技术 41 798

    Li J X, Li B, Zhu G Z, Yue J B, Wang Z Y 2017 Laser Technology 41 798

    [11]

    Wetter A, Faucher M, Sevigny B 2008 Proc. SPIE 6873 687327Google Scholar

    [12]

    Kliner A, Hou K C, Plötner M, Hupel C, Stelzner T, Schreiber T, Eberhardt R, Tünnermann A 2013 Proc. SPIE 8616 86160NGoogle Scholar

    [13]

    Babazadeh A, Nasirabad R R, Norouzey A, Hejaz K, Poozesh R, Heidariazar A, Golshan A H, Roohforouz A, Jafari S N T, Lafouti M 2014 Appl. optics 53 2611Google Scholar

    [14]

    孙静, 邹淑珍, 陈寒, 于海娟, 王旭葆, 林学春 2017 激光与光电子学进展 54 110001

    Sun J, Zou S Z, Chen H, Yu H J, Wang X B, Lin X C 2017 Laser & Optoelectronics Progress 54 110001

    [15]

    龚凯, 郝明明, 李京波 2017 科学通报 62 3768

    Gong K, Hao M M, Li J B 2017 Chin. Sci. Bull. 62 3768

    [16]

    Wang W L, Leng J Y, Cao J Q, Guo S F, Xu X J, Jiang Z F 2013 Opt. Commun. 287 187Google Scholar

    [17]

    Zhang Y L, Zhao L, Liang X B, Li C, Zhou T D, Wang S W, Deng Y, Wei X F 2015 Proc. SPIE 9255 92550NGoogle Scholar

    [18]

    Poozesh R, Norouzy A, Golshan A H, Roohforouz A, Babazadeh A, Nasirabad R R, Jafari N T, Heidariazar A, Hejaz K, Alavian A, Amidian A 2012 J. Lightwave Technol. 30 3199Google Scholar

    [19]

    Yin L, Yan M J, Han Z G, Wang H L, Shen H, Zhu R H 2017 Opt. Express 25 8760Google Scholar

    [20]

    胡志涛, 陈晓龙, 何兵, 周军, 张建华 2016 中国激光 43 0701004

    Hu Z T, Chen X L, He B, Zhou J, Zhang J H 2016 Chin. J. Lasers 43 0701004

    [21]

    张国庆 2016 博士学位论文 (广州: 华南理工大学)

    Zhang G Q 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

  • 图 1  五种CPS的结构图 (a)剥离器1; (b)剥离器2; (c)剥离器3; (d)剥离器4; (e)剥离器5

    Fig. 1.  Structural diagrams of five CPS: (a) CPS1; (b) CPS2; (c) CPS3; (d)CPS4; (e) CPS5.

    图 2  Pb = 150 W时五种CPS的切片热分布图 (a)剥离器1; (b)剥离器2; (c)剥离器3; (d)剥离器4; (e)剥离器5

    Fig. 2.  The slice thermal profile of five CPS when Pb = 150 W: (a) CPS1; (b) CPS2; (c) CPS3; (d) CPS4; (e) CPS5.

    图 3  剥离器6, 7, 8的结构图及两段式光纤细节图 (a)剥离器6; (b)剥离器7; (c)剥离器8; (d)两段式光纤细节图

    Fig. 3.  Structural diagrams of CPS 6, 7, 8 and Two-section optical fiber detail diagram: (a) CPS6; (b) CPS7; (c) CPS8; (d)Two-section optical fiber detail diagram.

    表 1  Pb = 150 W时五种CPS的整体热性能数据

    Table 1.  Overall thermal performance data of five CPS when Pb = 150 W.

    序号温度峰值温度谷值温差
    剥离器1321 K314 K7 K
    剥离器2313 K299 K14 K
    剥离器3316 K295 K21 K
    剥离器4336 K296 K40 K
    剥离器5325 K320 K5 K
    下载: 导出CSV

    表 2  Pb = 200 W时五种CPS的整体热性能数据

    Table 2.  Overall thermal performance data of five CPS when Pb = 200 W.

    序号温度峰值温度谷值温差
    剥离器1326 K318 K8 K
    剥离器2319 K301 K18 K
    剥离器3324 K295 K29 K
    剥离器4350 K296 K54 K
    剥离器5335 K328 K7 K
    下载: 导出CSV

    表 3  Pb = 150 W时剥离器6, 7, 8的整体整体热性能数据

    Table 3.  Overall thermal performance data of CPS 6, 7 and 8 when Pb = 150 W.

    序号温度峰值温度谷值温差
    剥离器6309 K293 K16 K
    剥离器7320 K315 K5 K
    剥离器8298 K293 K5 K
    下载: 导出CSV
    Baidu
  • [1]

    Nilsson J, Payne D N 2011 Science 332 921Google Scholar

    [2]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [3]

    张志强 2012 博士学位论文 (北京: 北京邮电大学)

    Zhang Z Q 2012 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [4]

    赵水, 段云锋, 王强, 张秀娟, 邓明发 2015 激光与红外 45 749

    Zhao S, Duan Y F, Wang Q, Zhang X J, Deng M F 2015 Laser & Infrared 45 749

    [5]

    郭良, 谌鸿伟, 王泽锋, 侯静, 陈金宝 2014 激光与光电子学进展 51 020602

    Guo L, Chen H W, Wang Z F, Hou J, Chen J B 2014 Laser & Optoelectronics Progress 51 020602

    [6]

    Huang Z H, Liang X B, Li C Y, Lin H H, Li Q, Wang J J, Jing F 2016 Appl. Optics 55 297Google Scholar

    [7]

    Xiao Y, Brunet F, Kanskar M, Wetter A, Holehouse N 2012 Opt. Express 20 3296Google Scholar

    [8]

    龚凯 2019 硕士学位论文 (广州: 广东工业大学)

    Gong K 2019 M. S. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)

    [9]

    邱禹力 2016 硕士学位论文 (武汉: 华中科技大学)

    Qiu Y L 2016 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [10]

    李杰雄, 李波, 朱广志, 岳建堡, 王智用 2017 激光技术 41 798

    Li J X, Li B, Zhu G Z, Yue J B, Wang Z Y 2017 Laser Technology 41 798

    [11]

    Wetter A, Faucher M, Sevigny B 2008 Proc. SPIE 6873 687327Google Scholar

    [12]

    Kliner A, Hou K C, Plötner M, Hupel C, Stelzner T, Schreiber T, Eberhardt R, Tünnermann A 2013 Proc. SPIE 8616 86160NGoogle Scholar

    [13]

    Babazadeh A, Nasirabad R R, Norouzey A, Hejaz K, Poozesh R, Heidariazar A, Golshan A H, Roohforouz A, Jafari S N T, Lafouti M 2014 Appl. optics 53 2611Google Scholar

    [14]

    孙静, 邹淑珍, 陈寒, 于海娟, 王旭葆, 林学春 2017 激光与光电子学进展 54 110001

    Sun J, Zou S Z, Chen H, Yu H J, Wang X B, Lin X C 2017 Laser & Optoelectronics Progress 54 110001

    [15]

    龚凯, 郝明明, 李京波 2017 科学通报 62 3768

    Gong K, Hao M M, Li J B 2017 Chin. Sci. Bull. 62 3768

    [16]

    Wang W L, Leng J Y, Cao J Q, Guo S F, Xu X J, Jiang Z F 2013 Opt. Commun. 287 187Google Scholar

    [17]

    Zhang Y L, Zhao L, Liang X B, Li C, Zhou T D, Wang S W, Deng Y, Wei X F 2015 Proc. SPIE 9255 92550NGoogle Scholar

    [18]

    Poozesh R, Norouzy A, Golshan A H, Roohforouz A, Babazadeh A, Nasirabad R R, Jafari N T, Heidariazar A, Hejaz K, Alavian A, Amidian A 2012 J. Lightwave Technol. 30 3199Google Scholar

    [19]

    Yin L, Yan M J, Han Z G, Wang H L, Shen H, Zhu R H 2017 Opt. Express 25 8760Google Scholar

    [20]

    胡志涛, 陈晓龙, 何兵, 周军, 张建华 2016 中国激光 43 0701004

    Hu Z T, Chen X L, He B, Zhou J, Zhang J H 2016 Chin. J. Lasers 43 0701004

    [21]

    张国庆 2016 博士学位论文 (广州: 华南理工大学)

    Zhang G Q 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

  • [1] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构.  , 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [2] 段磊, 徐润亲, 宋云波, 谭姝丹, 梁成斌, 徐帆江, 刘朝晖. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究.  , 2023, 72(10): 104203. doi: 10.7498/aps.72.20222464
    [3] 陈恺, 祝连庆, 牛海莎, 孟阔, 董明利. 基于1556 nm光纤激光器频率分裂效应的应力测量.  , 2019, 68(10): 104201. doi: 10.7498/aps.68.20182171
    [4] 陈桂波, 张佳佳, 王超群, 毕娟. 一种基于激光辐照热效应的薄膜参数反演方法.  , 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [5] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究.  , 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [6] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器.  , 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [7] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究.  , 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [8] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究.  , 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [9] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析.  , 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [10] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲.  , 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [11] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器.  , 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [12] 董小林, 肖虎, 马阎星, 周朴, 郭少锋. 高功率全光纤保偏主振荡功率放大型光纤激光器的实验研究.  , 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [13] 朱亚东, 肖虎, 王小林, 马阎星, 周朴. 利用全光纤结构Michelson腔实现两路高功率双包层光纤激光器相干合成.  , 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [14] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析.  , 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [15] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器.  , 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [16] 王静, 郑凯, 李坚, 刘利松, 陈根祥, 简水生. 基于高双折射Sagnac环的可调环形腔掺铒光纤激光器理论与实验研究.  , 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [17] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应.  , 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [18] 吴 坚. AlInGaAs垂直谐振腔顶面发射半导体激光器横向温度效应的解析热模型及其表征.  , 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [19] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器.  , 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [20] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响.  , 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
计量
  • 文章访问数:  7966
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-16
  • 修回日期:  2019-09-17
  • 上网日期:  2019-12-13
  • 刊出日期:  2020-01-05

/

返回文章
返回
Baidu
map