搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性

罗尹虹 张凤祁 郭红霞 Wojtek Hajdas

引用本文:
Citation:

基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性

罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas

Prediction of proton single event upset sensitivity based on heavy ion test data in nanometer hardened static random access memory

Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Wojtek Hajdas
PDF
HTML
导出引用
  • 为实现对纳米DICE (dual interlocked cell)加固器件抗质子单粒子能力的准确评估, 通过对65 nm双DICE加固静态随机存储器(static random access memory, SRAM)重离子单粒子翻转试验数据的分析, 获取了其在重离子垂直和倾角入射时的单粒子翻转 (single event upset, SEU)阈值以及离子入射最劣方位角, 并结合蒙卡仿真获取不同能量质子与器件多层金属布线层发生核反应产生的次级粒子LET(linear energy transfer)值最大值以及角度分布特性, 对器件在不同能量下的质子单粒子效应敏感性进行了预测, 质子单粒子效应实验结果验证了预测方法的有效性以及预测结果的准确性, 并提出针对DICE加固类器件在重离子和质子单粒子效应试验评估中均应开展离子最劣方位角下的倾角入射试验.
    In order to evaluate the radiation tolerance to proton single event effect(SEE) in nanometer dual interlocked cell (DICE) hardening device accurately, single event upset (SEU) linear energy transfer (LET) threshold at heavy ion normal and tilt incidence, and the worst case SEU orientational angle are acquired based on the analysis of heavy ion SEU testing data in 65 nm dual DICE static random access memory (SRAM). It is proved that dual DICE design is effective for improving the LET threshold against SEU. Howerer, heavy ion tilt incidence at the worst orientational angle will significantly reduce the SEU threshold and increase the SEU cross section. The worst orientational angle for SEU in DICE SRAM is the large tilting angle along the well. The maximum LET value and the emission angle distribution of secondary particle induced by the nuclear reaction between protons with different energy and layers with different multiple metallization are obtained by using Monte-Carlo simulation. The maximum LET value of secondary particle from proton-copper spallation reaction is higher than 15 MeV·cm2/mg for 100 MeV and 200 MeV protons. Secondary particles with the maximum energy and longest range are emitted preferentially in the forward direction. Proton SEU sensitivity is further predicted through combining heavy ion test data with Monte-Carlo simulation. Proton SEU test data verify the effectiveness of the prediction method and the accuracy of the prediction results. The research results indicate that the tolerance of nanometer DICE hardening technique against proton SEU will be overestimated if SEE evaluation test is carried out with only 100 MeV proton accelerator or normal incidence. Proton single event upset in nanometer dual DICE SRAM has an evident dependence on tilt angle and orientational angle. By adopting the above prediction method, whether proton SEE test needs performing or not in nanometer radiation-hardening device can be judged and screened. The requirements for the maximum energy of proton accelerator can be ascertained. In order to ensure that the devices are applied to space with high reliability, SEE test should be carried out including tilt incidence at the worst orientational angle in nanometer DICE hardening device in the process of heavy ion and proton SEE test evaluation.
      通信作者: 罗尹虹, luoyinhong@nint.ac.cn
    • 基金项目: 国家自然科学基金重大项目(批准号: 11690043, 11690040)资助的课题
      Corresponding author: Luo Yin-Hong, luoyinhong@nint.ac.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant Nos. 11690043, 11690040)
    [1]

    Hoeffgen S K, Durante M, Ferlet-Cavrois V, Harboe-Sørensen R, Lennartz W, Kuendgen T, Kuhnhenn J, Latessa C, Mathes M, Menicucci A, Metzger S, Nieminen P, Pleskac R, Poivey C, Schardt D, Weinand U 2012 IEEE Trans. Nucl. Sci. 59 1161Google Scholar

    [2]

    Falguere D, Boscher D, Nuns T, Duzellier S, Bourdarie S, Ecoffet R, Barde S, Cueto J, Alonzo C, Hoffman C 2002 IEEE Trans. Nucl. Sci. 49 2782Google Scholar

    [3]

    Peterson E L 1992 IEEE Trans. Nucl. Sci. 39 1600Google Scholar

    [4]

    Calvel P, Barillot C, Lamothe P, Ecoffet R, Duzellier S, Falguere D 1996 IEEE Trans. Nucl. Sci. 43 2827Google Scholar

    [5]

    Edmonds L D 2000 IEEE Trans. Nucl. Sci. 47 1713Google Scholar

    [6]

    Barak J 2006 .IEEE Trans. Nucl. Sci. 53 3336Google Scholar

    [7]

    Koga R, George J, Swift G, Yui C, Edmonds L, Carmichael C, Langley T, Murray P, Lanes K, Napier M 2004 IEEE Trans. Nucl. Sci. 51 2825Google Scholar

    [8]

    Hansen D L 2015 IEEE Trans. Nucl. Sci. 62 2874Google Scholar

    [9]

    Sierawski B D, Pellish J A, Reed R A, Schrimpf R D, Warren K M, Weller R A, Mendenhall M H, Black J D, Tipton A D, Xapsos M A, Baumann R C, Deng X, Campola M J, Friendlich M R, Kim H S, Phan A M, Seidleck C M 2009 IEEE Trans. Nucl. Sci. 56 3085Google Scholar

    [10]

    Warren K M, Weller R A, Sierawski B D, Reed R A, Mendenhall M H, Schrimph R D, Massengill L W, Porter M E, Wilkinson J D, Label K A, Adams J H 2007 IEEE Trans. Nucl. Sci. 54 898Google Scholar

    [11]

    Xi K, Geng C, Zhang Z G, Hou M D, Sun Y M, Luo J, Liu T Q, Wang B, Ye B, Yin Y N, Liu J 2016 Chin. Phys. C 40 066001Google Scholar

    [12]

    Warren K M, Sierawski B D, Reed R A, Weller R A, Carmichael C, Lesea A, Mendenhal M H, Dodd P E, Schrimpf R D, Massengill L W, Hoang T, Wan H, De Jong J L, Padovani R, Fabula J J 2007 IEEE Trans. Nucl. Sci. 54 2419Google Scholar

    [13]

    Gorbunov M S, Boruzdina A B, Dolotov P S 2016 IEEE Trans. Nucl. Sci. 63 2250Google Scholar

    [14]

    Loveless T D, Jagannathan S, Reece T, Chetia J, Bhuva B L, McCurdy M W, Massengill L W, Wen S J, Wong R, Rennie D 2011 IEEE Trans. Nucl. Sci. 58 1008Google Scholar

    [15]

    Amusan O A, Massengill L W, Baze M. P., Bhuva B L, Witulski A F, DasGupta S, Sternberg A L, Fleming P R, Heath C C, Alles M L 2007 IEEE Trans. Nucl. Sci. 52 2584

    [16]

    Gorbunov M S, Dolotov P S, Antonov A A, Zebrev G.I, Emeliyanov V V, Boruzdina A B, Petrov A G, Ulanova A V 2014 IEEE Trans. Nucl. Sci. 61 1575Google Scholar

    [17]

    Liu L, Yue S G, Lu S J 2015 J. Semicond. 36 115007Google Scholar

    [18]

    Cabanas-Holmen M, Cannon E H, Rabaa S, Amort T, Ballast J, Carson M, Lam D, Brees R 2013 IEEE Trans. Nucl. Sci. 60 4374Google Scholar

    [19]

    European Space Agency 2014 ESCC Basic Specification NO. 25100

    [20]

    Turflinger T L, Clymer D A, Mason L W, Stone S, George J S, Koga R, Beach E, Huntington K, Turflinger T L 2017 IEEE Trans. Nucl. Sci. 64 309Google Scholar

    [21]

    Schwank J R, Shaneyfelt M R, Baggio J, Dodd P E, Felix J A, Ferlet-Cavrois V, Paillet P, Lambert D, Sexton F W, Hash G L, Blackmore E 2006 IEEE Trans. Nucl. Sci. 52 2622

    [22]

    罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞 2016 65 068501Google Scholar

    Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q, Guo H X 2016 Acta Phys. Sin. 65 068501Google Scholar

  • 图 1  DICE存储单元电路原理图

    Fig. 1.  Diagram of the DICE memory cell.

    图 2  双DICE存储单元交叉布局版图示意图以及存储数据1时DICE单元4组灵敏节点对分布情况

    Fig. 2.  Layout diagram of dual DICE cells and the distribution of four sensitive pairs with “1”.

    图 3  重离子沿不同方位角倾斜60°入射器件示意图

    Fig. 3.  Schematic of heavy ion tilt 60° incidence along different orientational angle.

    图 4  65 nm SRAM重离子单粒子位翻转截面曲线

    Fig. 4.  65 nm dual DICE SRAM heavy ion bit SEU cross section versus the effective LET.

    图 5  65 nm DICE SRAM有源区上方多层金属布线层

    Fig. 5.  Multiple metal-interconnection layers above the active area in 65 nm SRAM.

    图 6  100 MeV和200 MeV质子穿过器件多层金属布线层后在硅中产生的次级粒子LET值分布 (a) 铝互联; (b) 铜互联

    Fig. 6.  LET distribution of secondary particle in silicon with 100 MeV and 200 MeV protons passing through multiple metallization layers: (a) Al interconnection; (b) cu interconnection.

    图 7  65 nm双DICE SRAM质子单粒子翻转截面

    Fig. 7.  Proton single event upset cross section in 65 nm dual DICE SRAM.

    图 8  100 MeV质子穿过多层金属布线层产生的Z = 27次级粒子能量角度分布

    Fig. 8.  The distribution of energy and angle of secondary particle with Z = 13 induced by interaction with multiple metallization layers by 100 MeV protons.

    表 1  双DICE存储单元存储不同数据时的灵敏节点对

    Table 1.  Sensitive pairs with different data stored in dual DICE cell.

    存储数据灵敏节点对存储数据灵敏节点对
    BL = 1, (A, B, C, D) = (1, 0, 1, 0)N1/N3BL = 0, (A, B, C, D) = (0, 1, 0, 1)N2/N4
    P2/P4P1/P3
    N1/P2N2/P3
    N3/P4N4/P1
    下载: 导出CSV

    表 2  试验离子种类信息

    Table 2.  Ion species in Heavy ion testing.

    序号离子种类能量/MeV射程/μm垂直入射时有效LET/(MeV·cm2/mg)倾角30°、60°时对应的有效LET/(MeV·cm2/mg)
    119F9+11082.74.45.1/9.3
    235Cl11, 14+16046.014.016.5/30.7
    348Ti10, 15+16934.723.5
    474Ge11, 20+21030.537.4
    579Br13, 21+22030.440.545.8/63.3
    6127I15, 25+26528.852.757.7/68.0
    7209Bi31+92353.799.8
    下载: 导出CSV
    Baidu
  • [1]

    Hoeffgen S K, Durante M, Ferlet-Cavrois V, Harboe-Sørensen R, Lennartz W, Kuendgen T, Kuhnhenn J, Latessa C, Mathes M, Menicucci A, Metzger S, Nieminen P, Pleskac R, Poivey C, Schardt D, Weinand U 2012 IEEE Trans. Nucl. Sci. 59 1161Google Scholar

    [2]

    Falguere D, Boscher D, Nuns T, Duzellier S, Bourdarie S, Ecoffet R, Barde S, Cueto J, Alonzo C, Hoffman C 2002 IEEE Trans. Nucl. Sci. 49 2782Google Scholar

    [3]

    Peterson E L 1992 IEEE Trans. Nucl. Sci. 39 1600Google Scholar

    [4]

    Calvel P, Barillot C, Lamothe P, Ecoffet R, Duzellier S, Falguere D 1996 IEEE Trans. Nucl. Sci. 43 2827Google Scholar

    [5]

    Edmonds L D 2000 IEEE Trans. Nucl. Sci. 47 1713Google Scholar

    [6]

    Barak J 2006 .IEEE Trans. Nucl. Sci. 53 3336Google Scholar

    [7]

    Koga R, George J, Swift G, Yui C, Edmonds L, Carmichael C, Langley T, Murray P, Lanes K, Napier M 2004 IEEE Trans. Nucl. Sci. 51 2825Google Scholar

    [8]

    Hansen D L 2015 IEEE Trans. Nucl. Sci. 62 2874Google Scholar

    [9]

    Sierawski B D, Pellish J A, Reed R A, Schrimpf R D, Warren K M, Weller R A, Mendenhall M H, Black J D, Tipton A D, Xapsos M A, Baumann R C, Deng X, Campola M J, Friendlich M R, Kim H S, Phan A M, Seidleck C M 2009 IEEE Trans. Nucl. Sci. 56 3085Google Scholar

    [10]

    Warren K M, Weller R A, Sierawski B D, Reed R A, Mendenhall M H, Schrimph R D, Massengill L W, Porter M E, Wilkinson J D, Label K A, Adams J H 2007 IEEE Trans. Nucl. Sci. 54 898Google Scholar

    [11]

    Xi K, Geng C, Zhang Z G, Hou M D, Sun Y M, Luo J, Liu T Q, Wang B, Ye B, Yin Y N, Liu J 2016 Chin. Phys. C 40 066001Google Scholar

    [12]

    Warren K M, Sierawski B D, Reed R A, Weller R A, Carmichael C, Lesea A, Mendenhal M H, Dodd P E, Schrimpf R D, Massengill L W, Hoang T, Wan H, De Jong J L, Padovani R, Fabula J J 2007 IEEE Trans. Nucl. Sci. 54 2419Google Scholar

    [13]

    Gorbunov M S, Boruzdina A B, Dolotov P S 2016 IEEE Trans. Nucl. Sci. 63 2250Google Scholar

    [14]

    Loveless T D, Jagannathan S, Reece T, Chetia J, Bhuva B L, McCurdy M W, Massengill L W, Wen S J, Wong R, Rennie D 2011 IEEE Trans. Nucl. Sci. 58 1008Google Scholar

    [15]

    Amusan O A, Massengill L W, Baze M. P., Bhuva B L, Witulski A F, DasGupta S, Sternberg A L, Fleming P R, Heath C C, Alles M L 2007 IEEE Trans. Nucl. Sci. 52 2584

    [16]

    Gorbunov M S, Dolotov P S, Antonov A A, Zebrev G.I, Emeliyanov V V, Boruzdina A B, Petrov A G, Ulanova A V 2014 IEEE Trans. Nucl. Sci. 61 1575Google Scholar

    [17]

    Liu L, Yue S G, Lu S J 2015 J. Semicond. 36 115007Google Scholar

    [18]

    Cabanas-Holmen M, Cannon E H, Rabaa S, Amort T, Ballast J, Carson M, Lam D, Brees R 2013 IEEE Trans. Nucl. Sci. 60 4374Google Scholar

    [19]

    European Space Agency 2014 ESCC Basic Specification NO. 25100

    [20]

    Turflinger T L, Clymer D A, Mason L W, Stone S, George J S, Koga R, Beach E, Huntington K, Turflinger T L 2017 IEEE Trans. Nucl. Sci. 64 309Google Scholar

    [21]

    Schwank J R, Shaneyfelt M R, Baggio J, Dodd P E, Felix J A, Ferlet-Cavrois V, Paillet P, Lambert D, Sexton F W, Hash G L, Blackmore E 2006 IEEE Trans. Nucl. Sci. 52 2622

    [22]

    罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞 2016 65 068501Google Scholar

    Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q, Guo H X 2016 Acta Phys. Sin. 65 068501Google Scholar

  • [1] 何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会. 质子入射AlxGa1–xN 材料的位移损伤模拟.  , 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [2] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火.  , 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [3] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟.  , 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [4] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究.  , 2020, (): 006100. doi: 10.7498/aps.69.20191796
    [5] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究.  , 2020, 69(13): 136103. doi: 10.7498/aps.69.20201796
    [6] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究.  , 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [7] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比.  , 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [8] 朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄. 100 keV质子与低高能质子在绝缘微孔中输运特性的对比分析.  , 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [9] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究.  , 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [10] 罗尹虹, 郭晓强, 陈伟, 郭刚, 范辉. 欧空局监测器单粒子翻转能量和角度相关性.  , 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [11] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究.  , 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [12] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析.  , 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [13] 罗尹虹, 张凤祁, 郭红霞, 郭晓强, 赵雯, 丁李利, 王园明. 纳米静态随机存储器质子单粒子多位翻转角度相关性研究.  , 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [14] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法.  , 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [15] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究.  , 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [16] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究.  , 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [17] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析.  , 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [18] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟.  , 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [19] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较.  , 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [20] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究.  , 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
计量
  • 文章访问数:  8048
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 修回日期:  2019-10-06
  • 上网日期:  2019-12-05
  • 刊出日期:  2020-01-05

/

返回文章
返回
Baidu
map