搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟

喻明浩

引用本文:
Citation:

非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟

喻明浩

Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma

Yu Ming-Hao
PDF
HTML
导出引用
  • 以航天领域中研究再入飞行器热防护系统的感应耦合等离子体(inductively coupled plasma, ICP)风洞为研究对象, 通过流场-电磁场-化学场-热力场-湍流场多场耦合求解研究ICP风洞流场与电磁场的分布特性及其相互作用机理. 数值模拟中, 基于热化学非平衡等离子体磁流体动力学模型准确模拟了空气ICP的高频放电、焦耳加热、能量转化、粒子内能交换等过程, 通过多物理场耦合计算模拟得到了100 kW级ICP风洞内空气等离子体的电子温度、粒子数密度、洛伦兹力、焦耳加热率、速度、压强、电场强度的分布规律. 研究结果表明: 在感应线圈区靠近等离子体炬壁附近, 等离子体流动处于热力学非平衡状态; 洛伦兹力对感应线圈区空气粒子的动量传递和电子热运动起着控制作用.
    In this paper, the inductively coupled plasma (ICP) wind tunnel, which is widely used in the development of thermal protection system for reentry vehicle in the aerospace field, is studied. The distribution properties and the interaction mechanism of the flow field and electromagnetic field are investigated by numerically solving the multi-physics fields coupling among the flow field, electromagnetic field, thermodynamic field and turbulent field. In the numerical simulation, the thermochemical non-equilibrium plasma magneto-hydrodynamic model is used to accurately simulate the high-frequency discharge, Joule heating, energy conversion, and internal energy exchange of air ICP. Finally, the distribution of electron temperature, particle number density, Lorentz force, Joule heating rate, velocity, pressure and electric field strength of air plasma are obtained through the multi-physics field coupling calculation. The results show that the plasma flow is in a thermodynamic non-equilibrium state near the torch wall in the induction coil region and that the Lorentz force plays an important role in controlling the momentum transfer. A strong eddy flow occurs between the inlet and the second turn of the inductive coil. The eddy flow has a close relationship with the negative pressure gradient and the electromagnetic heating phenomenon in the induction coil region. The radial Lorentz force is always negative. This indicates that the free electrons are generated near the wall due to the fact that the skin effect are always subjected to a force making them move to the central axis of the ICP torch. The maximum value of the radial Lorentz force is 3.95 times higher than that of the axial Lorentz. This indicates that the momentum transfer is predominantly radial. The Joule heating effect of the air particles is also affected by the radial Lorentz force. The maximum value of EI is 2.9 times larger than the real part of electric field, ER. The positive EI is generated by the free electrons inside the plasma. The number density of free electrons reaches a maximum value at a distance of 5.5 mm far from the inner wall surface of the torch below the second induction coil. 91% of N2 are dissociated into atomic N near the central axis. The maximum electron and translational temperature simulated in this paper are 9921 K and 8507 K, respectively.
      通信作者: 喻明浩, ymh@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11705143)、中国博士后科学基金(批准号: 2018M643814XB)和陕西省科技厅自然科学基金(批准号: 2018JQ1016)资助的课题.
      Corresponding author: Yu Ming-Hao, ymh@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11705143), the China Postdoctoral Science Foundation (Grant No. 2018M643814XB), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JQ1016).
    [1]

    Suzuki T, Fujita K, Ando K, Sakai T 2008 J. Thermophys. Heat Tr. 22 382Google Scholar

    [2]

    Suzuki T, Fujita K, Sakai T 2010 J. Thermophys. Heat Tr. 24 589Google Scholar

    [3]

    Yamada K, Miyatani S, Maeno H, Abe T 2013 Proceedings of 57th Space Sciences and Technology Conference Tottori, Japan, October 9−11, 2013 p2

    [4]

    熊举坤, 黄海涛, 2011 化工环保 31 119Google Scholar

    Xiong J K, Huang H T 2011 Environ. Prot. Chem. Indus. 31 119Google Scholar

    [5]

    朱海龙, 叶高英, 程昌明, 杨发展, 童洪辉 2014 稀有金属材料与工程 43 2810

    Zhu H L, Ye G Y, Cheng C M, Yang F Z, Tong H H 2014 Rare Metal Mat. Eng. 43 2810

    [6]

    Watanabe T, Okumiya H 2004 Sci. Technol. Adv. Mater. 5 639Google Scholar

    [7]

    Miyatani S, 2014 Proceedings of the 58th Space Science and Technology Union Symposium Nagasaki, Japan, November 11−12, 2014 p2

    [8]

    Reed T B 1961 J. Appl. Phys. 32 821Google Scholar

    [9]

    Mostaghimi J, Proulx P, Boulos M I 1987 J. Appl. Phys. 61 1753Google Scholar

    [10]

    Lei F, Li X, Liu Y, Liu D, Yang M, Yu Y 2018 AIP Adv. 8 015003Google Scholar

    [11]

    Yu M, Takahashi Y, Kihara H, Abe K, Yamada K, Abe T 2014 Plasma Sci. Technol. 16 930Google Scholar

    [12]

    魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏 2015 64 175201Google Scholar

    Wei X L, Xu H J, Li J H, Lin M, Song H M 2015 Acta Phys. Sin 64 175201Google Scholar

    [13]

    Xin Q, Su X, Alavi S, Wang B, Mostaghimi J 2018 Appl. Therm. Eng. 128 785Google Scholar

    [14]

    Morsli M E, Proulx P, Gravelle D 2011 Plasma Sources Sci. Technol. 20 015016Google Scholar

    [15]

    Wang Y N, Hou L J, Wang X 2002 Phys. Rev. Lett. 89 155001Google Scholar

    [16]

    Gao F, Li X, Zhao S, Wang Y 2012 Chin. Phys. B 21 075203Google Scholar

    [17]

    Yu M, Yamada K, Takahashi Y, Liu K, Zhao T 2016 Phys. Plasmas 23 123523Google Scholar

    [18]

    朱海龙, 童洪辉, 杨发展, 程昌明, 叶高英 2013 高电压技术 39 1621Google Scholar

    Zhu H L, Tong H H, Yang F Z, Cheng C M, Ye G Y 2013 High Volt. Eng. 39 1621Google Scholar

    [19]

    Barnes R M, Nikdel S 1976 J. Appl. Phys. 47 3929Google Scholar

    [20]

    Mostaghimi J, Boulos M I 1989 Plasma Chem. Plasma Proc. 9 25Google Scholar

    [21]

    Punjabi S B, Joshi N K, Mangalvedekar H A, Lande B K, Das A K, Kothari D C 2012 Phys. Plasmas 19 012108Google Scholar

    [22]

    Punjabi S, Barve D, Joshi N, Das A, Kothari D, Ganguli A, Sahasrabhude S, Joshi J 2019 Processes 7 133Google Scholar

    [23]

    Mostaghimi J, Boulos M I 1990 J. Appl. Phys. 68 2643Google Scholar

    [24]

    Stewart R A, Vitello P, Graves D B 1994 J. Vac. Sci. Technol. B 12 478Google Scholar

    [25]

    Munafò A, Alfuhaid S A, Cambier J L, Panesi M 2015 J. Appl. Phys. 118 133303Google Scholar

    [26]

    Zhang W, Lani A, Panesi M 2016 Phys. Plasmas 23 073512Google Scholar

    [27]

    Degrez G, Abeele D V, Barbante P, Bottin B 2004 Int. J. Numer. Method H. 14 538Google Scholar

    [28]

    Sumi T, Fujita K, Kurotaki T, Ito T, Mizuno M, Ishida K 2005 Trans. Japan Soc. Aero. Space Sci. 48 40Google Scholar

    [29]

    Morsli M E, Proulx P 2007 J. Phys. D: Appl. Phys. 40 4810Google Scholar

    [30]

    Yu M, Yamada K, Liu K, Zhao T 2019 AIP Adv. 9 015120Google Scholar

    [31]

    Yu M, Liu K, Zhao T, Zhang Y 2016 J. Korean Phys. Soc. 69 1537Google Scholar

    [32]

    Yu M, Kihara H, Abe K I, Takahashi Y 2015 J. Korean Phys. Soc. 66 1833Google Scholar

    [33]

    Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washionton DC: National Aeronautics and Space Administration) pp55−58

    [34]

    Morsli M E, Proulx P 2007 J. Phys. D: Appl. Phys. 40 380Google Scholar

    [35]

    Park C, Jaffe R L, Partridge H 2001 J. Thermophys. Heat Tr. 15 76Google Scholar

    [36]

    Lenzner S, Auweter-Kurtz M, Heiermann J, Sleziona P 2000 J. Thermophys. Heat Tr. 14 388Google Scholar

    [37]

    Fujita K, Mizuno M, Ishida K, Ito T 2008 J. Thermophys. Heat Tr. 22 685Google Scholar

    [38]

    Yos J M 1963 Transport Properties of Nitrogen, Hydrogen, Oxygen, and Air to 30000 K (Ohio, America: National Aeronautics and Space Administration) pp49−92

    [39]

    Gupta R N, Yos J M, Thompson R A, Lee K P 1990 A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K (Verginia, America: National Aeronautics and Space Administration) pp3−69

    [40]

    Curtiss C F, Hirschfelder J O 1949 J. Chem. Phys. 17 550Google Scholar

    [41]

    Devoto R S 1967 Phys. Fluids 10 2105Google Scholar

    [42]

    Ghorui S, Das A K 2013 Phys. Plasmas 20 093504Google Scholar

    [43]

    Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F 2009 Eur. Phys. J. D 54 607Google Scholar

    [44]

    Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley) p120

    [45]

    Park C 2004 J. Thermophys. Heat Tr. 18 527Google Scholar

    [46]

    Millikan R C, White D R 1963 J. Chem. Phys. 39 3209Google Scholar

    [47]

    Lazdinis S, Petrie S L 1974 Phys. Fluids 17 1539Google Scholar

    [48]

    Park C 1984 Proceedings of the 19th Thermophysics Conference Snowmass, Colorado, America, June 25−28, 1984 pp3, 4

    [49]

    Vincenti W G, Kruger C H 1965 Introduction to Physical Gas Dynamics (Malabar: Krieger)

    [50]

    Kim M, Gülhan A, Boyd I D 2012 J. Thermophys. Heat Tr. 26 244Google Scholar

    [51]

    Bourdon A, Vervisch P 1997 Phys. Rev. E 55 4634Google Scholar

    [52]

    Appleton J, Bray K 1964 J. Fluid Mech. 20 659Google Scholar

    [53]

    Gnoffo P A, Gupta R N, Shinn J L 1989 Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium (Hampton, America: National Aeronautics and Space Administration) pp10−12

    [54]

    Abe K, Kondoh T, Nagano Y 1994 Int. J. Heat Mass Trans. 37 139Google Scholar

  • 图 1  ICP风洞系统结构布局

    Fig. 1.  Schematic diagram of the ICP wind tunnel system.

    图 2  ICP炬计算网格和几何结构 (a) 电磁场与流场计算网格; (b) 等离子体炬几何结构

    Fig. 2.  Computational mesh and geometry of the inductively coupled plasma torch: (a) Computational mesh of electromagnetic- and flow-field; (b) geometric construction of the ICP torch.

    图 3  等离子体炬内气体流线和速度矢量(上半部分)以及电子温度云图(下半部分)分布

    Fig. 3.  Distributions of streamlines and velocity vector (upper), and electron temperature (lower) in the torch.

    图 4  等离子体流线(上半部分)和压力云图(下半部分)分布

    Fig. 4.  Distributions of streamlines (upper) and pressure contour (lower).

    图 5  轴向洛伦兹力(上半部分)和径向洛伦兹力(下半部分)的分布

    Fig. 5.  Distributions of axial Lorentz force (upper) and radial Lorentz force (lower).

    图 6  径向洛伦兹力(上半部分)和焦耳加热率(下半部分)的分布

    Fig. 6.  Distributions of Joule heating rate(lower) and radial Lorentz force (upper)

    图 7  电场强度分布(虚部EI (上半部分)实部ER(下半部分))

    Fig. 7.  Distribution of electric-field intensity (imaginary part EI (upper) and real part ER (lower)).

    图 8  电场强度Ei(上)和电子数密度ne(下)的分布

    Fig. 8.  Distribution of electric field intensity EI (upper) and electron number density ne (lower).

    图 9  感应线圈中心(x = 68 mm)空气粒子径向摩尔分数分布

    Fig. 9.  Mole fraction of air species along the radial direction at the coil center x = 68 mm.

    图 10  等离子体炬内平动温度(上半部分)和电子温度(下半部分)分布云图

    Fig. 10.  Distributions of translational (upper) and electronic temperatures (lower) in the torch.

    表 1  空气化学反应模型

    Table 1.  Chemical reaction model of air.

    r反应物生成物TfTbCrnθr文献
    离解/复合反应
    (S1 = N2, O2, NO;
    S2 = N, O; S3 = N2,
    O2; S4 = NO, N, O)
    1—3N2 + S1$ \rightleftharpoons $N + N + S1$\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $${T_{{\rm{tr}}}}$7.0 × 1021–1.60113200[35]
    4—5N2 + S2$ \rightleftharpoons $N + N + S2$\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $${T_{{\rm{tr}}}}$3.0 × 1022–1.60113200[35]
    6—8O2 + S1$ \rightleftharpoons $O + O + S1$\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $${T_{{\rm{tr}}}}$2.0 × 1021–1.5059500[35]
    9—10O2 + S2$ \rightleftharpoons $O + O + S2$\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $${T_{{\rm{tr}}}}$1.0 × 1022–1.5059500[35]
    11—12NO + S3$ \rightleftharpoons $N + O + S3$\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $${T_{{\rm{tr}}}}$5.0 × 10150.0075500[35]
    13—15NO + S4$ \rightleftharpoons $N + O + S4${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$1.1 × 10170.0075500[35]
    泽尔多维奇反应16N2 + O$ \rightleftharpoons $NO + N${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$6.4 × 1017–1.0038400[35]
    17NO + O$ \rightleftharpoons $N + O2${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$8.4 × 10120.0019450[35]
    电量交换反应18N2 + N+$ \rightleftharpoons $N2+ + N${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$1.0 × 10120.5012200[35]
    19O2+ + O$ \rightleftharpoons $O+ + O2${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$4.0 × 1012–0.0918000[35]
    20NO+ + O$ \rightleftharpoons $NO + O+${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$3.63 × 1015–0.6013000[33]
    21O+ + N2$ \rightleftharpoons $N2+ + O${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$9.1 × 10110.3622800[35]
    22NO+ + O2$ \rightleftharpoons $O2+ + NO${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$2.4 × 10130.4132600[35]
    23NO+ + N$ \rightleftharpoons $NO + N+${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$1.0 × 1019–0.9361000[33]
    24NO+ + O$ \rightleftharpoons $N+ + O2${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$1.0 × 10120.5077200[35]
    副电离反应25N + N$ \rightleftharpoons $N2+ + e${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$4.4 × 1071.5067500[35]
    26O + O$ \rightleftharpoons $O2+ + e${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$7.1 × 1022.7080600[35]
    27N + O$ \rightleftharpoons $NO+ + e${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$8.8 × 1081.0031900[35]
    28O2 + N2$ \rightleftharpoons $NO + NO+ + e$\sqrt {{T_{\rm{e}}}{T_{{\rm{vib}}}}} $${T_{\rm{e}}}$1.38 × 1020–1.84141000[33]
    29N2 + NO$ \rightleftharpoons $N2 + NO+ + e$\sqrt {{T_{\rm{e}}}{T_{{\rm{vib}}}}} $${T_{\rm{e}}}$2.20 × 1015–0.35108000[33]
    30O2 + NO$ \rightleftharpoons $O2 + NO+ + e$\sqrt {{T_{\rm{e}}}{T_{{\rm{vib}}}}} $${T_{\rm{e}}}$8.80 × 1016–0.35108000[33]
    电子碰撞电离反应31N + e$ \rightleftharpoons $N+ + e + e${T_{\rm{e}}}$${T_{\rm{e}}}$2.5 × 1034–3.82168600[35]
    32O + e$ \rightleftharpoons $O+ + e + e${T_{\rm{e}}}$${T_{\rm{e}}}$3.9 × 1033–3.78158500[35]
    下载: 导出CSV
    Baidu
  • [1]

    Suzuki T, Fujita K, Ando K, Sakai T 2008 J. Thermophys. Heat Tr. 22 382Google Scholar

    [2]

    Suzuki T, Fujita K, Sakai T 2010 J. Thermophys. Heat Tr. 24 589Google Scholar

    [3]

    Yamada K, Miyatani S, Maeno H, Abe T 2013 Proceedings of 57th Space Sciences and Technology Conference Tottori, Japan, October 9−11, 2013 p2

    [4]

    熊举坤, 黄海涛, 2011 化工环保 31 119Google Scholar

    Xiong J K, Huang H T 2011 Environ. Prot. Chem. Indus. 31 119Google Scholar

    [5]

    朱海龙, 叶高英, 程昌明, 杨发展, 童洪辉 2014 稀有金属材料与工程 43 2810

    Zhu H L, Ye G Y, Cheng C M, Yang F Z, Tong H H 2014 Rare Metal Mat. Eng. 43 2810

    [6]

    Watanabe T, Okumiya H 2004 Sci. Technol. Adv. Mater. 5 639Google Scholar

    [7]

    Miyatani S, 2014 Proceedings of the 58th Space Science and Technology Union Symposium Nagasaki, Japan, November 11−12, 2014 p2

    [8]

    Reed T B 1961 J. Appl. Phys. 32 821Google Scholar

    [9]

    Mostaghimi J, Proulx P, Boulos M I 1987 J. Appl. Phys. 61 1753Google Scholar

    [10]

    Lei F, Li X, Liu Y, Liu D, Yang M, Yu Y 2018 AIP Adv. 8 015003Google Scholar

    [11]

    Yu M, Takahashi Y, Kihara H, Abe K, Yamada K, Abe T 2014 Plasma Sci. Technol. 16 930Google Scholar

    [12]

    魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏 2015 64 175201Google Scholar

    Wei X L, Xu H J, Li J H, Lin M, Song H M 2015 Acta Phys. Sin 64 175201Google Scholar

    [13]

    Xin Q, Su X, Alavi S, Wang B, Mostaghimi J 2018 Appl. Therm. Eng. 128 785Google Scholar

    [14]

    Morsli M E, Proulx P, Gravelle D 2011 Plasma Sources Sci. Technol. 20 015016Google Scholar

    [15]

    Wang Y N, Hou L J, Wang X 2002 Phys. Rev. Lett. 89 155001Google Scholar

    [16]

    Gao F, Li X, Zhao S, Wang Y 2012 Chin. Phys. B 21 075203Google Scholar

    [17]

    Yu M, Yamada K, Takahashi Y, Liu K, Zhao T 2016 Phys. Plasmas 23 123523Google Scholar

    [18]

    朱海龙, 童洪辉, 杨发展, 程昌明, 叶高英 2013 高电压技术 39 1621Google Scholar

    Zhu H L, Tong H H, Yang F Z, Cheng C M, Ye G Y 2013 High Volt. Eng. 39 1621Google Scholar

    [19]

    Barnes R M, Nikdel S 1976 J. Appl. Phys. 47 3929Google Scholar

    [20]

    Mostaghimi J, Boulos M I 1989 Plasma Chem. Plasma Proc. 9 25Google Scholar

    [21]

    Punjabi S B, Joshi N K, Mangalvedekar H A, Lande B K, Das A K, Kothari D C 2012 Phys. Plasmas 19 012108Google Scholar

    [22]

    Punjabi S, Barve D, Joshi N, Das A, Kothari D, Ganguli A, Sahasrabhude S, Joshi J 2019 Processes 7 133Google Scholar

    [23]

    Mostaghimi J, Boulos M I 1990 J. Appl. Phys. 68 2643Google Scholar

    [24]

    Stewart R A, Vitello P, Graves D B 1994 J. Vac. Sci. Technol. B 12 478Google Scholar

    [25]

    Munafò A, Alfuhaid S A, Cambier J L, Panesi M 2015 J. Appl. Phys. 118 133303Google Scholar

    [26]

    Zhang W, Lani A, Panesi M 2016 Phys. Plasmas 23 073512Google Scholar

    [27]

    Degrez G, Abeele D V, Barbante P, Bottin B 2004 Int. J. Numer. Method H. 14 538Google Scholar

    [28]

    Sumi T, Fujita K, Kurotaki T, Ito T, Mizuno M, Ishida K 2005 Trans. Japan Soc. Aero. Space Sci. 48 40Google Scholar

    [29]

    Morsli M E, Proulx P 2007 J. Phys. D: Appl. Phys. 40 4810Google Scholar

    [30]

    Yu M, Yamada K, Liu K, Zhao T 2019 AIP Adv. 9 015120Google Scholar

    [31]

    Yu M, Liu K, Zhao T, Zhang Y 2016 J. Korean Phys. Soc. 69 1537Google Scholar

    [32]

    Yu M, Kihara H, Abe K I, Takahashi Y 2015 J. Korean Phys. Soc. 66 1833Google Scholar

    [33]

    Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washionton DC: National Aeronautics and Space Administration) pp55−58

    [34]

    Morsli M E, Proulx P 2007 J. Phys. D: Appl. Phys. 40 380Google Scholar

    [35]

    Park C, Jaffe R L, Partridge H 2001 J. Thermophys. Heat Tr. 15 76Google Scholar

    [36]

    Lenzner S, Auweter-Kurtz M, Heiermann J, Sleziona P 2000 J. Thermophys. Heat Tr. 14 388Google Scholar

    [37]

    Fujita K, Mizuno M, Ishida K, Ito T 2008 J. Thermophys. Heat Tr. 22 685Google Scholar

    [38]

    Yos J M 1963 Transport Properties of Nitrogen, Hydrogen, Oxygen, and Air to 30000 K (Ohio, America: National Aeronautics and Space Administration) pp49−92

    [39]

    Gupta R N, Yos J M, Thompson R A, Lee K P 1990 A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K (Verginia, America: National Aeronautics and Space Administration) pp3−69

    [40]

    Curtiss C F, Hirschfelder J O 1949 J. Chem. Phys. 17 550Google Scholar

    [41]

    Devoto R S 1967 Phys. Fluids 10 2105Google Scholar

    [42]

    Ghorui S, Das A K 2013 Phys. Plasmas 20 093504Google Scholar

    [43]

    Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F 2009 Eur. Phys. J. D 54 607Google Scholar

    [44]

    Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley) p120

    [45]

    Park C 2004 J. Thermophys. Heat Tr. 18 527Google Scholar

    [46]

    Millikan R C, White D R 1963 J. Chem. Phys. 39 3209Google Scholar

    [47]

    Lazdinis S, Petrie S L 1974 Phys. Fluids 17 1539Google Scholar

    [48]

    Park C 1984 Proceedings of the 19th Thermophysics Conference Snowmass, Colorado, America, June 25−28, 1984 pp3, 4

    [49]

    Vincenti W G, Kruger C H 1965 Introduction to Physical Gas Dynamics (Malabar: Krieger)

    [50]

    Kim M, Gülhan A, Boyd I D 2012 J. Thermophys. Heat Tr. 26 244Google Scholar

    [51]

    Bourdon A, Vervisch P 1997 Phys. Rev. E 55 4634Google Scholar

    [52]

    Appleton J, Bray K 1964 J. Fluid Mech. 20 659Google Scholar

    [53]

    Gnoffo P A, Gupta R N, Shinn J L 1989 Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium (Hampton, America: National Aeronautics and Space Administration) pp10−12

    [54]

    Abe K, Kondoh T, Nagano Y 1994 Int. J. Heat Mass Trans. 37 139Google Scholar

  • [1] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟.  , 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [2] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化.  , 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [3] 何新, 江涛, 高城, 张振福, 杨俊波. 一种计算非平衡等离子体中粒子能级布居的简化方法.  , 2021, 70(14): 145202. doi: 10.7498/aps.70.20202119
    [4] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究.  , 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [5] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟.  , 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [6] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究.  , 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [7] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟.  , 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [8] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [9] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟.  , 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [10] 钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布.  , 2009, 58(9): 6633-6639. doi: 10.7498/aps.58.6633
    [11] 邓峰, 赵正予, 石润, 张援农. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟.  , 2009, 58(10): 7382-7391. doi: 10.7498/aps.58.7382
    [12] 高 飞, 毛 明, 丁振峰, 王友年. 射频感应耦合Ar-N2等离子体物理特性的Langmuir探针测量及理论研究.  , 2008, 57(8): 5123-5129. doi: 10.7498/aps.57.5123
    [13] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究.  , 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [14] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究.  , 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [15] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟.  , 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [16] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响.  , 2006, 55(10): 5311-5317. doi: 10.7498/aps.55.5311
    [17] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究.  , 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [18] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟.  , 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [19] 訾炳涛, 姚可夫, 许光明, 崔建忠. 脉冲磁场下金属熔体凝固流场的数值模拟.  , 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟.  , 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  11763
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-03
  • 修回日期:  2019-07-15
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map