搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三价镨离子掺杂对铽镓石榴石晶体磁光性能影响的量子计算

蔡伟 许友安 杨志勇

引用本文:
Citation:

三价镨离子掺杂对铽镓石榴石晶体磁光性能影响的量子计算

蔡伟, 许友安, 杨志勇

Quantum calculation of the influence of trivalent praseodymium ions doping on the magneto-optical properties of terbium gallium garnet crystal

Cai Wei, Xu You-An, Yang Zhi-Yong
PDF
HTML
导出引用
  • 在铽镓石榴石(TGG)晶体中掺杂Pr3+离子能够有效提升材料的磁光性能, 但目前缺乏系统的理论计算阐明此问题. 本文根据量子理论, 分析了掺杂Pr3+离子的影响机理并进行了定量计算. 根据微扰理论解算久期方程, 得到自旋-轨道耦合、晶场、有效场及离子之间的超交换作用下, Tb3+, Pr3+离子的能级位移及波函数; 进一步解算出Tb3+, Pr3+离子自基态4f至5d的跃迁电偶极矩、各能级上的分布概率及平均磁矩; 获得了Pr:TGG晶体的维尔德常数和磁化率, 以及维尔德常数与Pr3+离子掺杂量之间的关系. 研究结果表明: 由于Pr3+离子引起的法拉第旋转角较Tb3+离子大, 同时Tb3+离子和Pr3+离子之间强烈的超交换作用引起了能级的进一步分裂, 导致Pr:TGG晶体维尔德常数明显提升; 掺杂Pr3+离子后, 晶体内部有效磁矩增高, 磁化率增大, 且温度依赖性降低; 维尔德常数数与Pr3+离子掺杂量成分段线性关系, 当晶体内部的Tb3+离子和Pr3+离子含量相等时, 达到最大值. 本文的计算结果与已有的实验数据符合较好.
    Compared with those materials with superior magneto-optical properties, such as YIG, Ce:YIG and Ba3Tb(PO4)3, pure terbium gallium garnet (TGG) crystal has comparative low Verdet constant and cannot meet the requirements of some high-power devices. Doping Pr3+ ions in TGG crystal can remarkably enhance its magneto-optical properties and expand its application scope, but there are still lack of systematic theoretical calculations to clarify this phenomenon. Based on the quantum theory, this paper presents the influence of doping Pr3+ ions on the magneto-optical performance and the corresponding quantitative calculation results. Firstly, taking various effects on Tb3+ ions and Pr3+ ions in the crystal into consideration, the Hamiltonian is modeled and discussed in detail. The secular equations are solved by applying the perturbation method, and then the energy level shifts and wave functions of the Tb3+ ions and Pr3+ ions are worked out, where the spin-orbit coupling, crystal field, effective field and super-exchange interaction between the two types of ions are considered. Furthermore, the transition dipole moments of Tb3+ ions and Pr3+ ions from the 4f ground state to higher level 5d, together with the distribution probability at each energy level and the average magnetic moment, are resolved. Finally, the Verdet constants and magnetic susceptibilities of pure TGG crystal and Pr:TGG crystal are calculated and compared with each other. Moreover, the relationship between the Verdet constant of Pr:TGG crystal and the Pr3+-doping amount is derived. The results show that the Faraday rotation angle caused by Pr3+ ions is larger than that of Tb3+ ions, meanwhile, the strong super-exchange between Tb3+ ions and Pr3+ ions causes further splitting of the 4f energy level, resulting in a significant increasement of the Verdet constant of the Pr:TGG crystal, which reaches 313.4 rad/m·T, 191.2 rad/m·T and 60.4 rad/m·T at the wavelengths of 532 nm, 632.8 nm and 1064 nm, respectively. In addition, doping Pr3+ ions inside the crystal improves the internal effective magnetic moment, which can reach 9.92 μB at 10 K. At the same time, the magnetic susceptibility increases, while the temperature interdependency decreases. The linear relationship between the reciprocal of magnetic susceptibility and temperature reduces from 4.41/K to 3.92/K. The Verdet constant of the Pr:TGG crystal is linear with the amount of Pr3+ ions doping. When the contents of Tb3+ ions and Pr3+ ions inside the crystal are equal, the maximum value is reached, which is about 2913.4 rad/m·T. The calculation results in this paper are in good agreement with the existing experimental data.
      通信作者: 许友安, 408091240@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61505254)资助的课题.
      Corresponding author: Xu You-An, 408091240@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505254).
    [1]

    Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302Google Scholar

    [2]

    Kaminskii A A, Eichler H J, Reiche P, Uecker R 2005 Laser Phys. Lett. 2 489Google Scholar

    [3]

    Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206Google Scholar

    [4]

    李长胜 2015 64 047801Google Scholar

    Li C S 2015 Acta Phys. Sin. 64 047801Google Scholar

    [5]

    Yasuhara R, Tokita S, Kawanaka J, Kawashima T 2007 Opt. Express 15 11264

    [6]

    Yasuhara R, Furuse H 2013 Opt. Lett. 38 1751Google Scholar

    [7]

    Yasuhara R, Tokita S, Kawanaka J 2007 Rev. Laser Eng. 35 806Google Scholar

    [8]

    刘琳, 俞育德 1985 人工晶体学报 1 27

    Liu L, Yu Y D 1985 J. Synth. Cryst. 1 27

    [9]

    Chani V I, Takeda H, Fukuda T 1999 J. Alloy. Compd. 60 212

    [10]

    陈建斌, 林羽, 李国辉, 陈建珊, 滕硕, 姚元根 2014 人工晶体学报 43 8

    Chen J B, Lin Y, Li G H, Chen J S, Teng S, Yao Y G 2014 J. Synth. Cryst. 43 8

    [11]

    徐嘉林, 董玮利, 彭海益, 刘旺, 金维召, 林海, 李春 2015 长春理工大学学报 3 20Google Scholar

    Xu J L, Dong W L, Peng H Y, Liu W, Jin W Z, Lin H, Li C 2015 J. Changchun Univ. Technol. 3 20Google Scholar

    [12]

    龙勇, 徐扬, 石自彬, 丁雨憧, 王佳, 付昌禄 2015 压电与声光 37 277Google Scholar

    Long Y, Xu Y, Shi Z B, Ding Y T, Wang J, Fu C L 2015 Piezoelectric and Sound and Light 37 277Google Scholar

    [13]

    裴广庆, 张艳, 柳祝平 2015 人工晶体学报 44 885Google Scholar

    Pei G Q, Zhang Y, Liu Z P 2015 J. Synth. Cryst. 44 885Google Scholar

    [14]

    龙勇, 石自彬, 丁雨憧 2016 压电与声光 38 433

    Long Y, Shi Z B, Ding Y D 2016 Piezoelectr. Acoustoopt. 38 433

    [15]

    Chen Z, Hang Y, Yang L, Wang J, Wang X Y, Zhang P X, Hong J Q, Shi C J, Wang Y Q 2015 Mater. Lett. 145 171Google Scholar

    [16]

    Chen Z, Yang L, Wang X Y, Hang Y 2016 Opt. Mater. 62 475Google Scholar

    [17]

    Zhu N F, Li Y X, Yu X F 2008 Mater. Lett. 62 2355Google Scholar

    [18]

    Sugar J 1965 JOSA 55 1058Google Scholar

    [19]

    杨翠红 2004 硕士学位论文(扬州: 扬州大学)

    Yang C H 2004 M. S. Thesis (Yangzhou: Yangzhou University) (in Chinese)

    [20]

    Suits J 1972 IEEE Trans. Magn. 8 95Google Scholar

    [21]

    Shen Y R 1964 Phys. Rev. B 133 A511Google Scholar

    [22]

    蔡伟, 邢俊辉, 杨志勇 2017 66 187801Google Scholar

    Cai W, Xing J H, Yang Z Y 2017 Acta Phys. Sin. 66 187801Google Scholar

    [23]

    Villaverde A B, Donatti D A, Bozinis D G 1978 J. Phys. C: Solid State Phys. 11 L495Google Scholar

    [24]

    Kiyoshi S 2010 Crystal Growth & Design 10 3466Google Scholar

    [25]

    Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lüthi B 2013 Eur. Phys. J. B 86 87Google Scholar

  • 图 1  维尔德常数的波长特性

    Fig. 1.  Wavelength characteristics of the Verdet constant.

    图 2  磁化率的温度特性

    Fig. 2.  Temperature characteristics of the magnetic susceptibility.

    图 3  维尔德常数随Pr3+离子含量(y)的变化情况

    Fig. 3.  The variation of Verdet constant with Pr3+ ions content (y).

    表 1  作用于Tb3+, Pr3+离子的晶场参数(cm–1)

    Table 1.  Crystal field parameters acting on Tb3+ and Pr3+ ions (cm–1).

    能级${B_{2,0}}$${B_{2,2}}$${B_{4,0}}$${B_{4,2}}$${B_{4,4}}$${B_{6,0}}$${B_{6,2}}$${B_{6,4}}$${B_{6,6}}$
    Tb3+4f–129.9271.2–2558.8296.21121.6682.3–157.21048–4.7
    5d–30631180–139845729995412
    Pr3+4f–334144–26302521126932–2071622–199
    5d–41622150–128877796308425
    下载: 导出CSV

    表 2  晶场及自旋轨道作用下的能级位移(cm–1)

    Table 2.  Energy level shift under the action of crystal field and spin orbit (cm–1).

    12345678
    Tb3+Ea141.649.784.989.2267.5272303.2310.5
    Eb1–863.2–336.4–56.3784.61446.71996.2
    Pr3+Ea1–7.4–8.955452.8512.4549.9567.1722.4
    Eb1–1767.6–542.91115.91198.22349.5
    下载: 导出CSV

    表 3  有效场作用下的能级分裂(cm–1)

    Table 3.  Energy level splitting under the action of effective field (cm–1).

    1234
    Tb3+(± 2.342$\mp\; 0.9516 \nu \chi $)(± 0.463$\mp\; 0.1422 \nu \chi $)(± 0.897$\mp\; 0.3641 \nu \chi $)(± 1.499$\mp \;0.6561 \nu \chi $)
    Pr3+(± 1.641$\mp \;0.8244 \nu \chi $)(± 0.423$\mp\; 0.0893 \nu \chi $)(± 3.302$\mp\; 0.1176 \nu \chi $)
    下载: 导出CSV

    表 4  超交换作用下的能级位移(cm–1)

    Table 4.  Energy level shift under the action of super-exchange interaction (cm–1).

    12345678
    Tb3+Ea3–201.3–152.3–96.4–3.282.4141168.3210
    Eb2–499.1–112.778.8236.7774.11135.8
    Pr3+Ea3–262.1–194.3–32.456.961.5176.5211.7387.9
    Eb2–844.1–10.3743.5882.41178.3
    下载: 导出CSV

    表 5  不同波长下的维尔德常数V (${\rm{rad/m}} \cdot {\rm{T}}$)

    Table 5.  Verdet constant at different wavelengths (${\rm{rad/m}} \cdot {\rm{T}}$).

    波长λ/nm457.9532632.883010641300
    TGGVc290.1179.4122.251.931.818.5
    Ve305.7190134.46140.220
    5%Pr:TGGVc421.8312.5190.2108.859.745.9
    Ve437324.5200.1121.468.749.2
    注: Vc为本文维尔德常数的计算值, Ve为实验值[16,23,24].
    下载: 导出CSV

    表 6  不同Pr3+离子含量(y)下的维尔德常数V(${\rm{rad/m}} \cdot {\rm{T}}$)

    Table 6.  Verdet constant under different Pr3+ ions content (${\rm{rad/m}} \cdot {\rm{T}}$).

    λ/nm
    y
    00.07311.522.9273
    532179.4312.52002.12913.42021.4367.9237.7
    632.8122.2190.21099.81588.61112.9231161.5
    106431.859.7432.1632.343877.849.4
    下载: 导出CSV

    表 7  不同温度下磁化率的倒数1/χ

    Table 7.  Inverse magnetic susceptibility at different temperatures.

    温度T /K10100150200250300
    TGG1/χc80.3458.4688.3942.81167.81399.5
    1/χe72.2469.3659.2908.91128.71349.6
    5%Pr:TGG1/χc64.3441.2637.7852.41029.31210.5
    1/χe56.4419599.2803.7987.11163.2
    注: 1/χc为本文计算值, 1/χe为实验值[16,25].
    下载: 导出CSV
    Baidu
  • [1]

    Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302Google Scholar

    [2]

    Kaminskii A A, Eichler H J, Reiche P, Uecker R 2005 Laser Phys. Lett. 2 489Google Scholar

    [3]

    Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206Google Scholar

    [4]

    李长胜 2015 64 047801Google Scholar

    Li C S 2015 Acta Phys. Sin. 64 047801Google Scholar

    [5]

    Yasuhara R, Tokita S, Kawanaka J, Kawashima T 2007 Opt. Express 15 11264

    [6]

    Yasuhara R, Furuse H 2013 Opt. Lett. 38 1751Google Scholar

    [7]

    Yasuhara R, Tokita S, Kawanaka J 2007 Rev. Laser Eng. 35 806Google Scholar

    [8]

    刘琳, 俞育德 1985 人工晶体学报 1 27

    Liu L, Yu Y D 1985 J. Synth. Cryst. 1 27

    [9]

    Chani V I, Takeda H, Fukuda T 1999 J. Alloy. Compd. 60 212

    [10]

    陈建斌, 林羽, 李国辉, 陈建珊, 滕硕, 姚元根 2014 人工晶体学报 43 8

    Chen J B, Lin Y, Li G H, Chen J S, Teng S, Yao Y G 2014 J. Synth. Cryst. 43 8

    [11]

    徐嘉林, 董玮利, 彭海益, 刘旺, 金维召, 林海, 李春 2015 长春理工大学学报 3 20Google Scholar

    Xu J L, Dong W L, Peng H Y, Liu W, Jin W Z, Lin H, Li C 2015 J. Changchun Univ. Technol. 3 20Google Scholar

    [12]

    龙勇, 徐扬, 石自彬, 丁雨憧, 王佳, 付昌禄 2015 压电与声光 37 277Google Scholar

    Long Y, Xu Y, Shi Z B, Ding Y T, Wang J, Fu C L 2015 Piezoelectric and Sound and Light 37 277Google Scholar

    [13]

    裴广庆, 张艳, 柳祝平 2015 人工晶体学报 44 885Google Scholar

    Pei G Q, Zhang Y, Liu Z P 2015 J. Synth. Cryst. 44 885Google Scholar

    [14]

    龙勇, 石自彬, 丁雨憧 2016 压电与声光 38 433

    Long Y, Shi Z B, Ding Y D 2016 Piezoelectr. Acoustoopt. 38 433

    [15]

    Chen Z, Hang Y, Yang L, Wang J, Wang X Y, Zhang P X, Hong J Q, Shi C J, Wang Y Q 2015 Mater. Lett. 145 171Google Scholar

    [16]

    Chen Z, Yang L, Wang X Y, Hang Y 2016 Opt. Mater. 62 475Google Scholar

    [17]

    Zhu N F, Li Y X, Yu X F 2008 Mater. Lett. 62 2355Google Scholar

    [18]

    Sugar J 1965 JOSA 55 1058Google Scholar

    [19]

    杨翠红 2004 硕士学位论文(扬州: 扬州大学)

    Yang C H 2004 M. S. Thesis (Yangzhou: Yangzhou University) (in Chinese)

    [20]

    Suits J 1972 IEEE Trans. Magn. 8 95Google Scholar

    [21]

    Shen Y R 1964 Phys. Rev. B 133 A511Google Scholar

    [22]

    蔡伟, 邢俊辉, 杨志勇 2017 66 187801Google Scholar

    Cai W, Xing J H, Yang Z Y 2017 Acta Phys. Sin. 66 187801Google Scholar

    [23]

    Villaverde A B, Donatti D A, Bozinis D G 1978 J. Phys. C: Solid State Phys. 11 L495Google Scholar

    [24]

    Kiyoshi S 2010 Crystal Growth & Design 10 3466Google Scholar

    [25]

    Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lüthi B 2013 Eur. Phys. J. B 86 87Google Scholar

  • [1] 吴静, 潘春宇. 感性神经元模型及其动力学特性研究.  , 2022, 71(4): 048701. doi: 10.7498/aps.71.20211626
    [2] 吴静, 潘春宇. 感性神经元模型及其动力学特性研究.  , 2021, (): . doi: 10.7498/aps.70.20211626
    [3] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究.  , 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [4] 蔡伟, 许友安, 杨志勇, 苗丽瑶, 赵钟浩. 顺磁性磁光材料维尔德常数解算模型的讨论.  , 2019, 68(20): 207802. doi: 10.7498/aps.68.20190845
    [5] 尚雅轩, 马健, 史平, 钱轩, 李伟, 姬扬. 铷原子气体自旋噪声谱的测量与改进.  , 2018, 67(8): 087201. doi: 10.7498/aps.67.20180098
    [6] 史平, 马健, 钱轩, 姬扬, 李伟. 铷原子气体自旋噪声谱测量的信噪比分析.  , 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [7] 蔡伟, 邢俊晖, 杨志勇. 磁光材料Verdet常数贡献性的讨论.  , 2017, 66(18): 187801. doi: 10.7498/aps.66.187801
    [8] 成泰民, 葛崇员, 孙树生, 贾维烨, 李林, 朱林, 马琰铭. 自旋为1/2的XY模型亚铁磁棱型链的物性和有序-无序竞争.  , 2012, 61(18): 187502. doi: 10.7498/aps.61.187502
    [9] 门福殿, 王海堂, 何晓刚. 强磁场中Fermi气体的稳定性及顺磁性.  , 2012, 61(10): 100503. doi: 10.7498/aps.61.100503
    [10] 曹明涛, 邱淑伟, 郭文阁, 刘韬, 韩亮, 刘昊, 张沛, 张首刚, 高宏, 李福利. 铷原子蒸汽中的光偏振旋转效应.  , 2012, 61(16): 164208. doi: 10.7498/aps.61.164208
    [11] 严卫, 陆文, 施健康, 任建奇, 王蕊. 法拉第旋转对空间被动微波遥感的影响及消除.  , 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [12] 周亮, 张靖仪. 带电带磁粒子的量子隧穿辐射.  , 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [13] 刘雍, 周睿, 李靖, 张悦, 熊锐, 尹镝, 汤五丰, 石兢. 尖晶石结构自旋有序CaTi2O4单晶生长和磁化率特性研究.  , 2010, 59(8): 5620-5625. doi: 10.7498/aps.59.5620
    [14] 陈晓东, 肖邵军, 顾永建, 林秀敏. 基于法拉第旋转构造光子Bell态分析器和GHZ态分析器.  , 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [15] 张开成. Sherrington-Kirkpatric自旋玻璃模型的非平衡态性质.  , 2009, 58(8): 5673-5678. doi: 10.7498/aps.58.5673
    [16] 汪丽莉, 熊 锐, 魏 伟, 胡 妮, 林 颖, 朱本鹏, 汤五丰, 余祖兴, 汤 征, 石 兢. 缺氧条件下准一维自旋梯状结构化合物(Sr1-xCax)14Cu24O41-δ的磁化率特性研究.  , 2008, 57(7): 4334-4340. doi: 10.7498/aps.57.4334
    [17] 臧小飞, 李菊萍, 谭 磊. 偶极-偶极相互作用下双势阱中旋量玻色-爱因斯坦凝聚磁化率的非线性动力学性质.  , 2007, 56(8): 4348-4352. doi: 10.7498/aps.56.4348
    [18] 王泽温, 介万奇. 稀磁半导体Hg0.89Mn0.11Te磁化强度及磁化率的研究.  , 2007, 56(2): 1141-1145. doi: 10.7498/aps.56.1141
    [19] 张靖仪, 赵 峥. 静质量不为零的粒子的量子隧穿辐射.  , 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [20] 龙云泽, 陈兆甲, 张志明, 万梅香, 郑 萍, 王楠林, 贺朝会, 耿 斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 纳米管结构聚苯胺的电阻率和磁化率.  , 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
计量
  • 文章访问数:  7641
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-19
  • 修回日期:  2019-05-14
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回
Baidu
map