搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力下SmNiO3钙钛矿氧化物薄膜材料的电导与红外光电导

胡海洋 陈吉堃 邵飞 吴勇 孟康康 李志鹏 苗君 徐晓光 王嘉鸥 姜勇

引用本文:
Citation:

应力下SmNiO3钙钛矿氧化物薄膜材料的电导与红外光电导

胡海洋, 陈吉堃, 邵飞, 吴勇, 孟康康, 李志鹏, 苗君, 徐晓光, 王嘉鸥, 姜勇

Electrical conductivity and infrared ray photoconductivity for lattice distorted SmNiO3 perovskite oxide film

Hu Hai-Yang, Chen Ji-Kun, Shao Fei, Wu Yong, Meng Kang-Kang, Li Zhi-Peng, Miao Jun, Xu Xiao-Guang, Wang Jia-Ou, Jiang Yong
PDF
HTML
导出引用
  • 稀土镍基钙钛矿氧化物RNiO3(R为稀土元素)可以在温度触发下发生从电子游离态到局域态的金属绝缘体转变, 这一特性在传感器, 数据存储, 调制开关等方面具有可观的应用价值. 本文通过脉冲激光沉积法, 在钛酸锶(SrTiO3)、铝酸镧(LaAlO3)单晶衬底上准外延生长热力学亚稳态镍酸钐(SmNiO3)薄膜材料, 利用薄膜与衬底间晶格失配引入界面应力, 实现对SmNiO3电子轨道结构与金属绝缘体相变温度的调节. 结合电输运性质与红外透射实验的综合表征研究, 论证了双向拉伸应变引起的晶格双向拉伸畸变, 可以引起SmNiO3的禁带宽度的展宽, 从而稳定绝缘体相并提高金属-绝缘相转变温度. 进一步结合近边吸收同步辐射实验表征, 揭示了拉伸应变稳定SmNiO3绝缘体相的本质在于 Ni—O成键轨道在双向拉伸形变作用下的弱化, 使得镍氧八面体中的价电子偏离镍原子从而稳定SmNiO3的低镍价态绝缘体相.
    The metal-to-insulator transitions achieved in rare-earth nickelate (RNiO3) receive considerable attentions owning to their potential applications in areas such as temperature sensors, non-volatile memory devices, electronic switches, etc. In contrast to conventional semiconductors, the RNiO3 is a typical electron correlation system, in which the electronic band structure is dominant by the Coulomb energy relating to the d-band and its hybridized orbitals. It was previously pointed out that lattice distortion can largely influence the electronic band structures and further significantly affect the electronic transportation properties, such as the resistivity and metal-to-insulator transition properties. Apart from directly measuring the transportation performance, the variations in the origin of carrier conduction and orbital transitions relating to the strain distortion of RNiO3 can also be reflected via their optical properties. In this work, we investigate the optical properties of samarium nickel (SmNiO3) thin films when lattice distortions are induced by interfacial strains. To introduce the interfacial strain, the SmNiO3 thin films are epitaxially grown on the strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3) single crystal substrates by using the pulsed laser deposition. A bi-axial tensile distortion happens when the SmNiO3 thin films are grown on SrTiO3 due to the smaller lattice constant of SmNiO3 than that of SrTiO3, while the one grown on LaAlO3 is strain-relaxed. We measure the infrared radiation (IR) transmission spectra of the SmNiO3 thin films grown on various substrates. The obtained IR transmission spectra are fitted by a Drude-Lorentz model and further converted into the curves of photoconductivity versus IR frequency. Comparing the difference in photoconductance between low frequency and high frequency reflects the two different origins of the conduction, which are related to intraband transition and band-to-band transition, respectively. The smaller photoconductance is observed for SmNiO3/SrTiO3 than for SmNiO3/LaAlO3 at low frequency, and this is expected to be caused by the suppression of free carriers as reported previously for tensile distorted SmNiO3. The consistence is obtained when further measuring the electronic transportation such as temperature-dependent electrical resistivity, as a higher resistivity is observed for SmNiO3/SrTiO3 than for SmNiO3/LaAlO3. The combination of the investigation of electrical transport with that of infrared transmission indicates that the tensile distortion in structure stabilizes the insulating phase to eliminate a pronounced metal-to-insulator transition and elevates the transition temperature. This is related to the respective twisting of the NiO6 octahedron when tensile distortion regulates the valance state of the transition metal and further opens the band gap, which is further confirmed by results of the X-ray absorption spectrum.
      通信作者: 陈吉堃, jikunchen@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61674013, 51602022)资助的课题.
      Corresponding author: Chen Ji-Kun, jikunchen@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674013, 51602022).
    [1]

    Alonso J A, Martínez-Lope M J, Casais M T, García-Muñoz J L, Fernández-Díaz M T 2000 Phys. Rev. B 61 1756Google Scholar

    [2]

    Alonso J A, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G, Martínez-Lope M J, Casais M T 1999 Phys. Rev. Lett. 82 3871Google Scholar

    [3]

    Zaghrioui M, Bulou A, Lacorre P, Laffez P 2001 Phys. Rev. B 64 120

    [4]

    Staub U, Meijer G I, Fauth F, Allenspach R, Bednorz J G, Karpinski J 2002 Phys. Rev. Lett 88 345

    [5]

    Medarde M L 1999 J. Phys.: Condens. Matter 9 1679

    [6]

    Ihzaz N, Oumezzine M, Kreisel J, Vincent H, Pignard S 2010 Chem.Vap. Deposition 14 111

    [7]

    Alonso J A, Martínez-Lope M J, Casais M T, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G 2001 Phys. Rev. B 64 115

    [8]

    Lacorre P, Torrance J B, Pannetier J, Nazzal A I, Wang P W, Huang T C 1991 J. Solid State Chem. 91 225Google Scholar

    [9]

    García-Muñoz J L, Rodríguez-Carvajal J, Lacorre P, Torrance J B 1992 Phys. Rev. B: Condens. Matter 46 4414Google Scholar

    [10]

    Zaanen J, Sawatzky G A, Allen J W 1985 Phys. Rev. Lett. 55 418Google Scholar

    [11]

    Torrance J B, Lacorre P, Nazzal A I, Ansaldo E J, Niedermayer Ch 1992 Phys. Rev. B 45 8209

    [12]

    Conchon F, Boulle A, Guinebretière R, Dooryhée E, Hodeau J L, Girardot C 2008 J. Phys.: Condens. Matter 20 145216Google Scholar

    [13]

    Kiri P, Hyett G, Binions R 2010 Adv. Mater. Lett. 44 86

    [14]

    Frand G, Bohnke O, Lacorre P, Fourquet J L, Carré A, Eid B 1995 J. Solid State Chem. 120 157Google Scholar

    [15]

    Compton A H 1931 Butsuri 5 75

    [16]

    Conchon F, Boulle A, Girardot C, Pignard S, Guinebretière R, Dooryhée E 2007 J. Phys. D: Appl. Phys. 40 4872Google Scholar

    [17]

    Li Z, Zhou Y, Qi H, Shi N N, Pan Q, Lu M 2016 Adv. Mater. 28 9117Google Scholar

    [18]

    Kaul A, Gorbenko O, Graboy I, Novojilov M, Bosak A, Kamenev A 2002 MRS Proceedings 755 37

    [19]

    Demazeau G, Marbeuf A, Pouchard M, Hagenmuller P 1971 J. Solid State Chem. 3 582Google Scholar

    [20]

    Jaramillo R, Schoofs F, Ha S D, Ramanathan S 2013 J. Mater. Chem. C 1 2455Google Scholar

    [21]

    Catalan G, Bowman R M, Gregg J M 2000 J. Appl. Phys. 87 606Google Scholar

    [22]

    Catalan G, Bowman R M, Gregg J M 2000 Phys. Rev. B 62 7892Google Scholar

    [23]

    Novojilov M A, Gorbenko O Y, Graboy I E, Kaul A R, Zandbergen H W, Babushkina N A 2000 Appl. Phys. Lett. 76 2041Google Scholar

    [24]

    Gorbenko O Y, Samoilenkov S V, Graboy I E, Kaul A R 2002 Cheminform 33 4026

    [25]

    Ambrosini A, Hamet J F 2003 Appl. Phys. Lett. 82 727Google Scholar

    [26]

    Conchon F, Boulle A, Guinebretière R, Girardot C, Pignard S, Kreisel J 2007 Appl. Phys. Lett. 91 113

    [27]

    Kumar A, Singh P, Kaur D, Jesudasan J, Raychaudhuri P 2006 J. Phys. D: Appl. Phys. 39 5310Google Scholar

    [28]

    Nikulin I V, Novojilov M A, Kaul A R, Mudretsova S N, Kondrashov S V 2004 Mater. Res. Bull. 39 775Google Scholar

    [29]

    Adler D 1968 Rev. Mod. Phys. 40 714Google Scholar

    [30]

    Ha S D, Otaki M, Jaramillo R, Podpirka A, Ramanathan S 2012 J. Solid State Chem. 190 233Google Scholar

    [31]

    Aydogdu G H, Ha S D, Viswanath B, Ramanathan S 2011 J. Appl. Phys. 109 1601

    [32]

    Wang Y, Dai M, Ho M T, Wielunski L S, Chabal Y J 2007 Appl. Phys. Lett. 90 3101

    [33]

    Deshpande A, Inman R, Jursich G, Takoudis C 2006 Microelectron. Eng. 83 547Google Scholar

    [34]

    Hartinger C, Mayr F, Loidl A, Kopp T 2006 Phys. Rev. B 73 024408Google Scholar

    [35]

    Dresselhaus M S http://web.mit.edu/afs/athena/course/6/6.732/www/opt.pdf [2018-4-29]

    [36]

    Kuzmenko A B http://optics.unige.ch/alexey/reffit.html [2018-4-29]

    [37]

    Ruppen J, Teyssier J, Peil O E, Catalano S, Gibert M, Mravlje J, van der Marel D 2015 Phys. Rev. B 92 155145Google Scholar

    [38]

    Ha S D, Jaramillo R, Silevitch D M, Schoofs F, Kerman K, Baniecki J D, Ramanathan S 2013 Phys. Rev. B 87 125150Google Scholar

    [39]

    Jaramillo R, Ha S D, Silevitch D M, Ramanathan S 2014 Nat. Phys. 10 304Google Scholar

    [40]

    Kleiner K, Melke J, Merz M, Jakes P, Nage P, Schuppler S, Liebau V, Ehrenberg H 2015 ACS Appl. Mater. Interfaces 7 19589Google Scholar

    [41]

    Mossanek R J O, Domínguez-Cañizares G, Gutiérrez A, Abbate M, Díaz-Fernández D, Soriano L 2013 J. Phys.: Condens. Matter 25 495506Google Scholar

  • 图 1  SmNiO3晶体的钙钛矿结构 (a) 结构的多面体形式; (b) 结构的球棍形式

    Fig. 1.  Perovskite structure of SmNiO3 crystal: (a) Polyhedron form of structure; (b) the stick form of structure.

    图 2  不同基底上生长的SmNiO3薄膜的XRD 图谱和 RSM 图 (a) SrTiO3 (XRD); (b) LaAlO3 (XRD); (c) SrTiO3 (RSM); (d) LaAlO3 (RSM)

    Fig. 2.  XRD patterns and (114) RSM diagram of SmNiO3 films grown on different substrates: (a) SrTiO3 (XRD); (b) LaAlO3 (XRD); (c) SrTiO3 (RSM); (d) LaAlO3 (RSM).

    图 3  不同基体上的SNO薄膜的电阻率-温度曲线 (a) SrTiO3; (b) LaAlO3

    Fig. 3.  Resistivity temperature curves of SNO thin films on different substrates: (a) SrTiO3; (b) LaAlO3.

    图 4  不同基体上的SmNiO3薄膜透射率的拟合结果 (a) LaAlO3, (b) SrTiO3 ; 不同基体上的SmNiO3薄膜的光电导率实部与波数的关系曲线 (c) LaAlO3, (d) SrTiO3

    Fig. 4.  Fitting results of transmittance of SmNiO3 thin films on different substrates: (a) LaAlO3, (b) SrTiO3; the relation curve of the real part of the optical conductivity and wave number of SmNiO3 film: (c) LaAlO3, (d) SrTiO3.

    图 5  不同衬底上的SmNiO3薄膜发生金属绝缘转变时Ni—O—Ni键角及NiO6八面体的旋转状态 (a) LaAlO3; (b) SrTiO3; (c) SmNiO3薄膜的电子能带跃迁图

    Fig. 5.  The Ni—O—Ni bond angle and the rotation of NiO6 when the SmNiO3 film on different substrates transform from insulating state to metal state: (a) LaAlO3; (b) SrTiO3; (c) SmNiO3 film electron band transition diagram.

    图 6  SmNiO3/SrTiO3 (001) 和 SmNiO3/LaAlO3 (001)薄膜的元素吸收谱 (a) O元素L-边吸收谱; (b) Ni元素K-边吸收谱

    Fig. 6.  Absorption spectra of SmNiO3/SrTiO3 (001) and SmNiO3/LaAlO3 (001) films: (a) K-edge absorption spectrum of O element; (b) L-edge absorption spectrum of Ni element.

    表 1  不同基体上的SmNiO3薄膜透射率的Lorentz拟合参数

    Table 1.  Lorentz fitted parameters of transmittance of SmNiO3 thin films on different substrates.

    LaAlO3 ($\omega_\infty$ = 3.36)
    #$\omega_{\rm o}$$\omega_{\rm p}$$\gamma$($\omega_{\rm p}/\omega_{\rm o}$)2$\gamma/\omega_{\rm o}$
    1−1.57 × 1041.94 × 101−6.05 × 1041.53 × 10−63.86
    26.73 × 10391.27 × 10359.41 × 10685.82 × 10−10−4.15 × 1028
    31.09 × 1034.23 × 1028.11 × 1021.52 × 10−17.46 × 10−1
    41.72 × 1033.97 × 1021.47 × 1035.34 × 10−28.52 × 10−1
    59.55 × 10147.07 × 10147.09 × 10231.51 × 10−1−2.46 × 108
    65.39 × 10149.37 × 10149.02 × 10233.38 × 10−23.70 × 108
    SrTiO3 ($\omega_\infty$ = 3.07)
    #$\omega_{\rm o}$$\omega_{\rm p}$$\gamma$($\omega_{\rm p}/\omega_{\rm o}$)2$\gamma/\omega_{\rm o}$
    17.04 × 1019.99 × 1019.952.021.41 × 10−1
    21.50 × 1029.98 × 1019.734.43 × 10−16.49 × 10−2
    33.64 × 10431.80 × 1037−1.00 × 10703.38 × 10−12−2.97 × 1029
    41.18 × 1012.80 × 1024.635.61 × 1023.91 × 10−1
    54.27 × 1022.56 × 1023.50 × 1013.61 × 10−18.20 × 10−2
    63.75 × 1022.55 × 1024.06 × 1014.63 × 10−11.08 × 10−1
    74.29 × 1093.99 × 1098.32 × 10123.54 × 10−29.20 × 102
    82.68 × 1082.88 × 1091.00 × 10141.81 × 10−19.91 × 103
    93.28 × 1093.11 × 1092.30 × 10104.29 × 10−23.36 × 103
    104.70 × 1092.85 × 1099.42 × 10138.26 × 10−26.58 × 103
    下载: 导出CSV
    Baidu
  • [1]

    Alonso J A, Martínez-Lope M J, Casais M T, García-Muñoz J L, Fernández-Díaz M T 2000 Phys. Rev. B 61 1756Google Scholar

    [2]

    Alonso J A, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G, Martínez-Lope M J, Casais M T 1999 Phys. Rev. Lett. 82 3871Google Scholar

    [3]

    Zaghrioui M, Bulou A, Lacorre P, Laffez P 2001 Phys. Rev. B 64 120

    [4]

    Staub U, Meijer G I, Fauth F, Allenspach R, Bednorz J G, Karpinski J 2002 Phys. Rev. Lett 88 345

    [5]

    Medarde M L 1999 J. Phys.: Condens. Matter 9 1679

    [6]

    Ihzaz N, Oumezzine M, Kreisel J, Vincent H, Pignard S 2010 Chem.Vap. Deposition 14 111

    [7]

    Alonso J A, Martínez-Lope M J, Casais M T, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G 2001 Phys. Rev. B 64 115

    [8]

    Lacorre P, Torrance J B, Pannetier J, Nazzal A I, Wang P W, Huang T C 1991 J. Solid State Chem. 91 225Google Scholar

    [9]

    García-Muñoz J L, Rodríguez-Carvajal J, Lacorre P, Torrance J B 1992 Phys. Rev. B: Condens. Matter 46 4414Google Scholar

    [10]

    Zaanen J, Sawatzky G A, Allen J W 1985 Phys. Rev. Lett. 55 418Google Scholar

    [11]

    Torrance J B, Lacorre P, Nazzal A I, Ansaldo E J, Niedermayer Ch 1992 Phys. Rev. B 45 8209

    [12]

    Conchon F, Boulle A, Guinebretière R, Dooryhée E, Hodeau J L, Girardot C 2008 J. Phys.: Condens. Matter 20 145216Google Scholar

    [13]

    Kiri P, Hyett G, Binions R 2010 Adv. Mater. Lett. 44 86

    [14]

    Frand G, Bohnke O, Lacorre P, Fourquet J L, Carré A, Eid B 1995 J. Solid State Chem. 120 157Google Scholar

    [15]

    Compton A H 1931 Butsuri 5 75

    [16]

    Conchon F, Boulle A, Girardot C, Pignard S, Guinebretière R, Dooryhée E 2007 J. Phys. D: Appl. Phys. 40 4872Google Scholar

    [17]

    Li Z, Zhou Y, Qi H, Shi N N, Pan Q, Lu M 2016 Adv. Mater. 28 9117Google Scholar

    [18]

    Kaul A, Gorbenko O, Graboy I, Novojilov M, Bosak A, Kamenev A 2002 MRS Proceedings 755 37

    [19]

    Demazeau G, Marbeuf A, Pouchard M, Hagenmuller P 1971 J. Solid State Chem. 3 582Google Scholar

    [20]

    Jaramillo R, Schoofs F, Ha S D, Ramanathan S 2013 J. Mater. Chem. C 1 2455Google Scholar

    [21]

    Catalan G, Bowman R M, Gregg J M 2000 J. Appl. Phys. 87 606Google Scholar

    [22]

    Catalan G, Bowman R M, Gregg J M 2000 Phys. Rev. B 62 7892Google Scholar

    [23]

    Novojilov M A, Gorbenko O Y, Graboy I E, Kaul A R, Zandbergen H W, Babushkina N A 2000 Appl. Phys. Lett. 76 2041Google Scholar

    [24]

    Gorbenko O Y, Samoilenkov S V, Graboy I E, Kaul A R 2002 Cheminform 33 4026

    [25]

    Ambrosini A, Hamet J F 2003 Appl. Phys. Lett. 82 727Google Scholar

    [26]

    Conchon F, Boulle A, Guinebretière R, Girardot C, Pignard S, Kreisel J 2007 Appl. Phys. Lett. 91 113

    [27]

    Kumar A, Singh P, Kaur D, Jesudasan J, Raychaudhuri P 2006 J. Phys. D: Appl. Phys. 39 5310Google Scholar

    [28]

    Nikulin I V, Novojilov M A, Kaul A R, Mudretsova S N, Kondrashov S V 2004 Mater. Res. Bull. 39 775Google Scholar

    [29]

    Adler D 1968 Rev. Mod. Phys. 40 714Google Scholar

    [30]

    Ha S D, Otaki M, Jaramillo R, Podpirka A, Ramanathan S 2012 J. Solid State Chem. 190 233Google Scholar

    [31]

    Aydogdu G H, Ha S D, Viswanath B, Ramanathan S 2011 J. Appl. Phys. 109 1601

    [32]

    Wang Y, Dai M, Ho M T, Wielunski L S, Chabal Y J 2007 Appl. Phys. Lett. 90 3101

    [33]

    Deshpande A, Inman R, Jursich G, Takoudis C 2006 Microelectron. Eng. 83 547Google Scholar

    [34]

    Hartinger C, Mayr F, Loidl A, Kopp T 2006 Phys. Rev. B 73 024408Google Scholar

    [35]

    Dresselhaus M S http://web.mit.edu/afs/athena/course/6/6.732/www/opt.pdf [2018-4-29]

    [36]

    Kuzmenko A B http://optics.unige.ch/alexey/reffit.html [2018-4-29]

    [37]

    Ruppen J, Teyssier J, Peil O E, Catalano S, Gibert M, Mravlje J, van der Marel D 2015 Phys. Rev. B 92 155145Google Scholar

    [38]

    Ha S D, Jaramillo R, Silevitch D M, Schoofs F, Kerman K, Baniecki J D, Ramanathan S 2013 Phys. Rev. B 87 125150Google Scholar

    [39]

    Jaramillo R, Ha S D, Silevitch D M, Ramanathan S 2014 Nat. Phys. 10 304Google Scholar

    [40]

    Kleiner K, Melke J, Merz M, Jakes P, Nage P, Schuppler S, Liebau V, Ehrenberg H 2015 ACS Appl. Mater. Interfaces 7 19589Google Scholar

    [41]

    Mossanek R J O, Domínguez-Cañizares G, Gutiérrez A, Abbate M, Díaz-Fernández D, Soriano L 2013 J. Phys.: Condens. Matter 25 495506Google Scholar

  • [1] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器.  , 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [2] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变.  , 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [3] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究.  , 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [4] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变.  , 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [5] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展.  , 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [6] 刀流云, 张子涛, 肖煜同, 张明昊, 王帅, 何珺, 贾金山, 余乐军, 孙波, 熊昌民. 光电协同增强的场效应对LaAlO3/SrTiO3界面中持续光电导的调控.  , 2019, 68(6): 067302. doi: 10.7498/aps.68.20182204
    [7] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究.  , 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [8] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究.  , 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [9] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理.  , 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [10] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落.  , 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [11] 蒋钊, 陈学康. 界面合金化控制柔性Al/PI薄膜应力的研究.  , 2015, 64(21): 216802. doi: 10.7498/aps.64.216802
    [12] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究.  , 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [13] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究.  , 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [14] 陈为兰, 顾培夫, 王 颖, 章岳光, 刘 旭. 红外薄膜中热应力的研究.  , 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [15] 马建华, 孙璟兰, 孟祥建, 林 铁, 石富文, 褚君浩. SrTiO3金属-绝缘体-半导体结构的介电与界面特性.  , 2005, 54(3): 1390-1395. doi: 10.7498/aps.54.1390
    [16] 袁先漳, 裴慧元, 陆卫, 李宁, 史国良, 方家熊, 沈学础. Zn0.04Cd0.96Te中深能级的红外光电导谱研究.  , 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [17] 陈岩松. 铁电薄膜探测器PbZrTiO3的红外光电响应实验研究.  , 1998, 47(8): 1378-1382. doi: 10.7498/aps.47.1378
    [18] 刘坤, 褚君浩, 陈诗伟, 赵军, 汤定元. 金属-绝缘体-半导体器件红外探测机理研究.  , 1995, 44(7): 1137-1140. doi: 10.7498/aps.44.1137
    [19] 赵勇, 诸葛向彬, 何业冶. Y1-xCaxBa2Cu3O6系统中空穴掺杂诱导的绝缘体-金属转变和超导电性.  , 1992, 41(7): 1151-1156. doi: 10.7498/aps.41.1151
    [20] 杨永宏, 邢定钰, 龚昌德. YBa2Cu3O7-x的金属-绝缘体转变.  , 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
计量
  • 文章访问数:  10457
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-09
  • 修回日期:  2018-11-19
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map