搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纠缠微波信号的特性及表示方法

李响 吴德伟 苗强 朱浩男 魏天丽

引用本文:
Citation:

纠缠微波信号的特性及表示方法

李响, 吴德伟, 苗强, 朱浩男, 魏天丽

Characteristics and expressions of entangled microwave signals

Li Xiang, Wu De-Wei, Miao Qiang, Zhu Hao-Nan, Wei Tian-Li
PDF
导出引用
  • 纠缠微波信号是电磁场微波频段量子特性的体现.在总结了现有纠缠微波信号产生及验证实验的基础上,针对目前没有统一的表达式来描述纠缠微波信号格式的问题,通过深入分析纠缠微波信号的特性,提出了两种纠缠微波信号的表示方法.一种是在量子框架下,利用双模压缩真空态表示,并分别在光子数表象下和Wigner分布下分析了其信号特征,刻画了正交分量之间的正反关联特性;另一种是在经典框架下,利用关联随机信号表示,刻画了测量后纠缠微波信号场幅度正交分量随时间变化的波形图.两种表示恰当合理地反映了纠缠微波信号连续变量纠缠的特性.
    Entangled microwave signal is the reflection of the quantum characteristics of electromagnetic field in a GHz frequency range. Its generation is mainly dependent on superconducting circuits. Owing to the fact that there is no canonical expression to describe the format of entangled microwave signals, two expressional methods are presented on the basis of analyzing the characteristics of entangled microwave signals. One is in quantum frame, and the other is in classical frame. In quantum frame, we express entangled microwave signals in two-mode squeezed vacuum state. According to input-output relationship and parametric amplifier property in the generating process of entangled microwave signals, we describe the characteristics by two-mode squeezing operator and quantum Langevin equation. In the representation of photon number and Wigner function, we analyze the photon number distribution and the quadrature components' distribution of two-mode squeezed vacuum state, which shows the entangled two-photon correlation and the non-localized positive (negative) correlation of quadrature components. These are consistent with the characteristics of entangled microwave signals. Therefore, the results demonstrate that the entangled microwave signals can be expressed by two-mode squeezed vacuum state. In classical frame, we express entangled microwave signals in correlated random signals approximately. According to the relationship between quadrature components and the quantization of electromagnetic field, we construct the relation among electric-field intensity, input angular frequency, and squeezed parameter. The random number with Gaussian distribution is used as an input state to implement the simulation analysis. We illustrate the waveforms of entangled microwave signals after measurement and the extracted quadrature component waveform varying with time. The simulation results are consistent with the measurement results. These results show that the classical expression can reflect the one-path randomicity and two-path correlativity, which are the intrinsic characteristics of entangled microwave signals. Therefore, it is rational to express entangled microwave signals in correlated random signals. These two expressions properly reflect the continuous variable entanglement characteristics of entangled microwave signals. The expression of two-mode squeezed vacuum state is complete. Plenty of parameters that represent quantum information can be calculated by two-mode squeezed vacuum state, such as entanglement degree or the power of noise fluctuation. The merit of the expression of correlated random signals is intuitive, which makes it easier to understand the nonclassical characteristics of entangled microwave signals.
    • 基金项目: 国家自然科学基金(批准号:61603413,61573372)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61603413, 61573372).
    [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Raimond J, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [3]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys. 77 513

    [4]

    Gisin N, Thew R T 2010 Electron. Lett. 46 965

    [5]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (New York: Cambridge University Press)

    [6]

    Benjamin H 2016 C. R. Phys. 17 679

    [7]

    Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y, Tsai J S 2008 Appl. Phys. Lett. 93 042510

    [8]

    Zhong L, Menzel E P, Candia R D, Eder P, Ihmig M, Baust A, Haeberlein M, Hoffmann E, Inomata K, Yamamoto T, Nakamura Y, Solano E, Deppe F, Marx A, Gross R 2013 New J. Phys. 15 125013

    [9]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601

    [10]

    Menzel E P, Candia R D, Deppe F, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [11]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901

    [12]

    Dambach S, Kubala B, Ankerhold J 2017 New J. Phys. 19 023027

    [13]

    Mallet F, Castellanos-Beltran M A, Ku H S, Glancy S, Knill E, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2011 Phys. Rev. Lett. 106 220502

    [14]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 465 64

    [15]

    Abdo B, Kamal A, Devoret M H 2013 Phys. Rev. B 87 014508

    [16]

    Zhou X, Schmitt V, Bertet P, Vion D, Wustmann W, Shumeiko V, Esteve D 2014 Phys. Rev. B 89 214517

    [17]

    Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N, Martinis John M 2014 Appl. Phys. Lett. 104 263513

    [18]

    Pillet J D, Flurin E, Mallet F, Huard B 2015 Appl. Phys. Lett. 106 083509

    [19]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503

    [20]

    Zhao Y J, Wang C Q, Zhu X B, Liu Y X 2016 Sci. Rep. 6 23646

    [21]

    Khrennikov A, Ohya M, Watanab N 2010 J. Russ. Laser Res. 31 462

    [22]

    Bharath H M, Ravishankar V 2014 Phys. Rev. A 89 062110

  • [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Raimond J, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [3]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys. 77 513

    [4]

    Gisin N, Thew R T 2010 Electron. Lett. 46 965

    [5]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (New York: Cambridge University Press)

    [6]

    Benjamin H 2016 C. R. Phys. 17 679

    [7]

    Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y, Tsai J S 2008 Appl. Phys. Lett. 93 042510

    [8]

    Zhong L, Menzel E P, Candia R D, Eder P, Ihmig M, Baust A, Haeberlein M, Hoffmann E, Inomata K, Yamamoto T, Nakamura Y, Solano E, Deppe F, Marx A, Gross R 2013 New J. Phys. 15 125013

    [9]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601

    [10]

    Menzel E P, Candia R D, Deppe F, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [11]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901

    [12]

    Dambach S, Kubala B, Ankerhold J 2017 New J. Phys. 19 023027

    [13]

    Mallet F, Castellanos-Beltran M A, Ku H S, Glancy S, Knill E, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2011 Phys. Rev. Lett. 106 220502

    [14]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 465 64

    [15]

    Abdo B, Kamal A, Devoret M H 2013 Phys. Rev. B 87 014508

    [16]

    Zhou X, Schmitt V, Bertet P, Vion D, Wustmann W, Shumeiko V, Esteve D 2014 Phys. Rev. B 89 214517

    [17]

    Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N, Martinis John M 2014 Appl. Phys. Lett. 104 263513

    [18]

    Pillet J D, Flurin E, Mallet F, Huard B 2015 Appl. Phys. Lett. 106 083509

    [19]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503

    [20]

    Zhao Y J, Wang C Q, Zhu X B, Liu Y X 2016 Sci. Rep. 6 23646

    [21]

    Khrennikov A, Ohya M, Watanab N 2010 J. Russ. Laser Res. 31 462

    [22]

    Bharath H M, Ravishankar V 2014 Phys. Rev. A 89 062110

  • [1] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验.  , 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [2] 王帅, 眭永兴, 孟祥国. 光子增加双模压缩真空态在马赫-曾德尔干涉仪相位测量中的应用.  , 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [3] 魏天丽, 吴德伟, 杨春燕, 罗均文, 苗强, 李响. 一种双模压缩微波制备的相位锁定方案.  , 2020, 69(3): 034204. doi: 10.7498/aps.69.20191348
    [4] 李百宏, 王豆豆, 庞华锋, 张涛, 解忧, 高峰, 董瑞芳, 李永放, 张首刚. 用二元相位调制实现啁啾纠缠光子对关联时间的压缩.  , 2017, 66(4): 044206. doi: 10.7498/aps.66.044206
    [5] 王湘林, 吴德伟, 李响, 朱浩男, 陈坤, 方冠. 一种生成质量最优路径纠缠微波信号的压缩参量选择方法.  , 2017, 66(23): 230302. doi: 10.7498/aps.66.230302
    [6] 李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕. 一种基于von Neumann熵的双路径纠缠量子微波信号生成质量评估方法.  , 2016, 65(11): 114204. doi: 10.7498/aps.65.114204
    [7] 汪志云, 陈培杰, 张良英. 色关联噪声驱动下双模激光随机共振.  , 2014, 63(19): 194204. doi: 10.7498/aps.63.194204
    [8] 何锐, Bing He. 量子隐形传态的新方案.  , 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [9] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射.  , 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [10] 陈德彝, 王忠龙. 偏置信号调制下噪声关联的周期调制对单模激光随机共振的影响.  , 2009, 58(5): 2907-2913. doi: 10.7498/aps.58.2907
    [11] 陈德彝, 王忠龙. 信号调制下色噪声间关联的周期调制对单模激光随机共振的影响.  , 2009, 58(3): 1403-1409. doi: 10.7498/aps.58.1403
    [12] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案.  , 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
    [13] 徐 伟, 靳艳飞, 徐 猛, 李 伟. 偏置信号调制下色关联噪声驱动的线性系统的随机共振.  , 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [14] 韩立波, 曹 力, 吴大进, 王 俊. 偏置信号调制下色关联噪声驱动的单模激光的光强相对涨落.  , 2004, 53(10): 3363-3368. doi: 10.7498/aps.53.3363
    [15] 宋同强. 利用双模压缩真空态实现量子态的远程传输.  , 2004, 53(10): 3358-3362. doi: 10.7498/aps.53.3358
    [16] 程庆华, 曹 力, 吴大进. 信号调制色泵噪声和实虚部间关联量子噪声驱动下单模激光的随机共振现象.  , 2004, 53(8): 2556-2562. doi: 10.7498/aps.53.2556
    [17] 韩立波, 曹 力, 吴大进, 王 俊. 信号直接调制下色关联噪声驱动的单模激光的随机共振.  , 2004, 53(7): 2127-2132. doi: 10.7498/aps.53.2127
    [18] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干.  , 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [19] 罗晓曙, 方锦清, 屈万里. 用延长信号等效关联时间的方法实现超混沌控制.  , 1999, 48(4): 589-595. doi: 10.7498/aps.48.589
    [20] 胡响明, 彭金生. 双模双光子关联发射激光的稳态特性及其量子噪声压缩特性.  , 1997, 46(2): 255-266. doi: 10.7498/aps.46.255
计量
  • 文章访问数:  6014
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-26
  • 修回日期:  2018-10-11
  • 刊出日期:  2019-12-20

/

返回文章
返回
Baidu
map