搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究

范伟利 杨宗林 张振雲 齐俊杰

引用本文:
Citation:

高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究

范伟利, 杨宗林, 张振雲, 齐俊杰

Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells

Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie
PDF
导出引用
  • 碳基钙钛矿太阳能电池因稳定性高、成本低廉而备受关注,但由于钙钛矿与碳电极之间能级匹配度不高,界面阻力大而导致效率不及金属基钙钛矿太阳能电池.本文制备了碳基无空穴传输层FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon电池结构.通过对介孔二氧化钛层、钙钛矿层厚度进行优化,并对钙钛矿的薄膜形貌及钙钛矿激发电子寿命、可见光吸收度、载流子的提取与分离等进行深度分析,讨论了电池效率提升的内在机理.当介孔氧化钛层和钙钛矿层达到最优厚度时,钙钛矿太阳能电池获得了开路电压(Voc)为0.93 V、电流密度(Jsc)为21.75 mA/cm2、填充因子为55%、光电转化效率达到11.11%.同时对电池进行了稳定性研究,在室温湿度为40%–50%的条件下放置15 d电池性能依旧稳定保持原来的95%,优于金属基钙钛矿太阳能电池,从而为碳电极钙钛矿太阳能电池的商业化发展提供了可能.
    Carbon based perovskite solar cells (C-PSCs) have attracted much attention because of their high stability and low-cost of production. However, due to the high interfacial resistance and the low energy level matching between perovskite and carbon electrodes, the maximum power conversion efficiency (PCE) is less than that of the metal-based perovskite solar cells. In this paper, a carbon-based perovskite solar cell is fabricated with the device structure of FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon. The perovskite films and carbon based perovskite solar cells are characterized by scanning electron microscope, atomic force microscope, X-ray diffraction (XRD), UV-Vis absorption spectrum, the steady-state spectrum, the time-resolved PL (TRPL) spectrum, and an electrochemical workstation. In addition, the internal mechanism of the efficiency improvement of carbon-based perovskite solar cell is discussed in depth. Then, the rotation speeds of mesoporous TiO2 layer (TiO2 paste diluted by ethanol with mass ratio of 1:4) are 1500, 1600, 1700 and 1800 r/min and the speeds of perovskite layer (CH3NH3I and PbI2 at a 1:1 molar ratio are stirred in a mixture of DMF and DMSO (9:1, v/v)) are 2000, 3000, 4000 and 5000 r/min; When the speed of m-TiO2 layer is 1700 r/min and the speed of perovskite layer is 4000 r/min, the mesoporous TiO2 layer thickness is about 500 nm, Thickness of CH3NH3PbI3 capping layer is about 400 nm. The cooperation of these two layers eventually leads to the high-quality perovskite with enlarged grain size, prolonged photoluminescence lifetime, lowered defect density, increased carrier concentration, and the finally enhanced photovoltaic performance. The device obtains the highest PCE of 11.11% with an open circuit voltage (Voc) of 0.93 V, a current density (Jsc) of 21.75 mA/cm2 and fill factor (FF) of 55%. At the same time, the stability of the carbon-based perovskite solar cell is also studied. The XRD is used for initial perovskite and the perovskite after 15 days to investigate the photo- and humidity stability of the full cells without encapsulation. The device exhibits excellent air stability with only 5% degradation when aged in ambient air at room temperature with 40%-50% humidity without any encapsulation after 15 days, which is better than the metal based perovskite solar cell. Our results open the way for making cost-efficient and stable PSCs toward market deployment.
      通信作者: 齐俊杰, junjieqi@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51572025)和国家基金(批准号:41422050303)经费资助的课题.
      Corresponding author: Qi Jun-Jie, junjieqi@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51572025) and the National Foundation of China (Grant No. 41422050303).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 122 8604

    [3]

    Burschka J, Pellet N, Moon S, J Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316

    [4]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, H Yoo, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081

    [5]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [6]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [7]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese) [柴磊, 钟敏 2016 65 237902]

    [8]

    D’Innocenzo V, Grancini G, Alcocer M J P, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Nat. Commun. 5 3586

    [9]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [10]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [11]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [12]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S i 2017 Science 356 1376

    [13]

    Nam J J, Hyejin N, Eui H J, Tae-Youl Y, Yong G L, Geunjin K, Hee-Won S, Sang I S, Jaemin L, Jangwon S 2018 Nat. Energy 3 682

    [14]

    Wei Z H, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N, Yang S H 2014 Energy Environ. Sci. 7 3326

    [15]

    Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H W 2015 J. Mater. Chem. A 3 9165

    [16]

    Yang Y Y, Xiao J Y, Wei H Y, Zhu L F, Li D M, Luo Y H, Wu H J, Meng Q B 2014 RSC Adv. 4 52825

    [17]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 18 16140

    [18]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132

    [19]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H 2014 Science 6194 295

    [20]

    Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M 2015 Nano Lett. 15 2402

    [21]

    Cao K, Zuo Z, Cui J, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 Nano Energy 17 171

    [22]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108

    [23]

    Chen H, Wei Z, He H, Zheng X, Wong K S, Yang S 2016 Adv. Energy Mater. 6 1502087

    [24]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 6 16140

    [25]

    Anaraki E H, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Gratzel M, Hagfeldt A, Correa-Baena J 2016 Energy Environ. Sci. 9 3128

    [26]

    Reese M O, Gevorgyan S A, Jørgensen M, Bundgaard E, Kurtz S R, Ginley D S, Olson D C, Lloyd M T, Morvillo P, Katz E A, Elschner, Haillant A O, Currier T R, Shrotriya V, Hermenau M, Riede M, Kirov K R, Trimmel G, Krebs F C 2011 Sol. Energy Mater. Sol. Cells 95 1253

    [27]

    Berhe T A, Su W N, Che C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 122 8604

    [3]

    Burschka J, Pellet N, Moon S, J Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316

    [4]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, H Yoo, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081

    [5]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [6]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [7]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese) [柴磊, 钟敏 2016 65 237902]

    [8]

    D’Innocenzo V, Grancini G, Alcocer M J P, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Nat. Commun. 5 3586

    [9]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [10]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [11]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [12]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S i 2017 Science 356 1376

    [13]

    Nam J J, Hyejin N, Eui H J, Tae-Youl Y, Yong G L, Geunjin K, Hee-Won S, Sang I S, Jaemin L, Jangwon S 2018 Nat. Energy 3 682

    [14]

    Wei Z H, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N, Yang S H 2014 Energy Environ. Sci. 7 3326

    [15]

    Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H W 2015 J. Mater. Chem. A 3 9165

    [16]

    Yang Y Y, Xiao J Y, Wei H Y, Zhu L F, Li D M, Luo Y H, Wu H J, Meng Q B 2014 RSC Adv. 4 52825

    [17]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 18 16140

    [18]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132

    [19]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H 2014 Science 6194 295

    [20]

    Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M 2015 Nano Lett. 15 2402

    [21]

    Cao K, Zuo Z, Cui J, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 Nano Energy 17 171

    [22]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108

    [23]

    Chen H, Wei Z, He H, Zheng X, Wong K S, Yang S 2016 Adv. Energy Mater. 6 1502087

    [24]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 6 16140

    [25]

    Anaraki E H, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Gratzel M, Hagfeldt A, Correa-Baena J 2016 Energy Environ. Sci. 9 3128

    [26]

    Reese M O, Gevorgyan S A, Jørgensen M, Bundgaard E, Kurtz S R, Ginley D S, Olson D C, Lloyd M T, Morvillo P, Katz E A, Elschner, Haillant A O, Currier T R, Shrotriya V, Hermenau M, Riede M, Kirov K R, Trimmel G, Krebs F C 2011 Sol. Energy Mater. Sol. Cells 95 1253

    [27]

    Berhe T A, Su W N, Che C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池.  , 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应.  , 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能.  , 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究.  , 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究.  , 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展.  , 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [7] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制.  , 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [8] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池.  , 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [9] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能.  , 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [10] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展.  , 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池.  , 2021, (): . doi: 10.7498/aps.70.20211344
    [12] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性.  , 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [13] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究.  , 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [14] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究.  , 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [15] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展.  , 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [16] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究.  , 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [17] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展.  , 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [18] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究.  , 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [19] 曾广根, 郑家贵, 黎 兵, 雷 智, 武莉莉, 蔡亚平, 李 卫, 张静全, 蔡 伟, 冯良桓. 具有高阻抗本征SnO2过渡层的CdS/CdTe多晶薄膜太阳电池.  , 2006, 55(9): 4854-4859. doi: 10.7498/aps.55.4854
    [20] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究.  , 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
计量
  • 文章访问数:  9983
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-30
  • 修回日期:  2018-08-24
  • 刊出日期:  2019-11-20

/

返回文章
返回
Baidu
map