-
The photonic band gap is a spectral range which cannot propagate in a periodic optical nanostructure, that is, the structure itself has a “forbidden band”. It has been successfully applied to the filters, amplifiers, mixers, etc. As is well known, dynamically tunable photonic band gaps in cold atomic lattices are of great importance in various research fields. However, the photonic band gaps of a traditional photonic crystal are non-tunable because the periodic structure is determined once the photonic crystal is grown. On the other hand, a majority of previous researches focused on improving the reflectivity of photonic band gap, which can only keep approaching to 1. Due to the action of the vacuum of the radiation field, near-degenerate lower level has an additional coherence term, the spontaneously generated coherence term. In this paper, we consider a three-level ∧-type atomic system driven by a strong coherent field, a weak coherent field and an incoherent pump, in which the two ground states are of hyperfine structure. The one-dimensional photonic band gaps are formed by cold atoms trapped in a one-dimensional-ordered optical lattice and this system may create two photonic band gaps (PBGs). The trapped cold atoms have a Gaussian density distribution in each period as determined by the optical potential depth and the average atomic temperature. We investigate in detail how the reflectivities of the two PBGs are influenced by the coherent effect of spontaneously generated coherence. Then, we find that the reflectivities of the two band gaps can be significantly improved by the spontaneously generated coherence. The reflectivities of such two band gaps can be dynamically manipulated by varying the intensity of incoherent driving field and the relative phase between the probe field and the coupling field, which cannot be realized in a conventional ∧-type atomic system. Besides, by adjusting the parameters appropriately, the reflectivities of these two band gaps can be higher than 1, which is because probe field gain stems from the spontaneously generated coherence. In the future, photonic transport properties can be investigated in the three-dimensional atomic lattices and this work is meaningful for the optical routing, photodiode and transistor.
-
Keywords:
- photonic band gap /
- electromagnetically induced transparency /
- spontaneously generated coherence
[1] Bao Q Q, Yang L, Ba N, Cui C L, Wu J H 2013 J. Opt. Soc. Am. B 30 1532
[2] Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[3] Yang L, He B, Wu J H, Zhang Z, Xiao M 2016 Optica 3 1095
[4] Gärttner M, Evers J 2013 Phys. Rev. A 88 033417
[5] Alireza L, Yadipour R, Baghban H 2017 Chin. Phys. B 26 124207
[6] Zhang Y, Wang X, Zhang Y Z 2018 Laser Phys. Lett. 15 075402
[7] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[8] Artoni M, La Rocca G 2006 Phys. Rev. Lett. 96 073905
[9] Wu Z K, Zhang Y Q, Yuan C Z, Wen F, Zheng H B, Zhang Y P 2013 Phys. Rev. A 88 063828
[10] Chen H X, Zhang X, Zhu D Y, Yang C, Jiang T, Zheng H B, Zhang Y P 2014 Phys. Rev. A 90 043846
[11] Zhang Y P, Wang Z G, Nie Z Q, Li C B, Chen H X, Lu K Q, Xiao M 2011 Phys. Rev. Lett. 106 093904
[12] Zhang Y Q, Wu Z K, Belić M R, Zheng H B, Wang Z G, Xiao M, Zhang Y P 2015 Laser & Photon. Rev. 9 331
[13] Schilke A, Zimmermann C, Courteille P W, Guerin W 2011 Phys. Rev. Lett. 106 223903
[14] Petrosyan D 2007 Phys. Rev. A 76 053823
[15] Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809
[16] Tariq M, Ziauddin, Bano T, Ahmad I, Lee R K 2017 J. Modern Opt. 64 1777
[17] Ba Nuo, Wu X Y, Li D F, Wang D, Fei J Y, Wang L 2017 Chin. Phys. B 26 54207
[18] Wu J H, Gao J Y 2002 Phys. Rev. A 65 063807
[19] Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602
[20] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901
[21] Gao J W, Bao Q Q, Wan R G, Cui C L, Wu J H 2011 Phys. Rev. A 83 053815
[22] Bendickson J M, Dowling J P, Scalora M 1996 Phys. Rev. E 53 4107
[23] Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859
-
[1] Bao Q Q, Yang L, Ba N, Cui C L, Wu J H 2013 J. Opt. Soc. Am. B 30 1532
[2] Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[3] Yang L, He B, Wu J H, Zhang Z, Xiao M 2016 Optica 3 1095
[4] Gärttner M, Evers J 2013 Phys. Rev. A 88 033417
[5] Alireza L, Yadipour R, Baghban H 2017 Chin. Phys. B 26 124207
[6] Zhang Y, Wang X, Zhang Y Z 2018 Laser Phys. Lett. 15 075402
[7] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[8] Artoni M, La Rocca G 2006 Phys. Rev. Lett. 96 073905
[9] Wu Z K, Zhang Y Q, Yuan C Z, Wen F, Zheng H B, Zhang Y P 2013 Phys. Rev. A 88 063828
[10] Chen H X, Zhang X, Zhu D Y, Yang C, Jiang T, Zheng H B, Zhang Y P 2014 Phys. Rev. A 90 043846
[11] Zhang Y P, Wang Z G, Nie Z Q, Li C B, Chen H X, Lu K Q, Xiao M 2011 Phys. Rev. Lett. 106 093904
[12] Zhang Y Q, Wu Z K, Belić M R, Zheng H B, Wang Z G, Xiao M, Zhang Y P 2015 Laser & Photon. Rev. 9 331
[13] Schilke A, Zimmermann C, Courteille P W, Guerin W 2011 Phys. Rev. Lett. 106 223903
[14] Petrosyan D 2007 Phys. Rev. A 76 053823
[15] Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809
[16] Tariq M, Ziauddin, Bano T, Ahmad I, Lee R K 2017 J. Modern Opt. 64 1777
[17] Ba Nuo, Wu X Y, Li D F, Wang D, Fei J Y, Wang L 2017 Chin. Phys. B 26 54207
[18] Wu J H, Gao J Y 2002 Phys. Rev. A 65 063807
[19] Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602
[20] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901
[21] Gao J W, Bao Q Q, Wan R G, Cui C L, Wu J H 2011 Phys. Rev. A 83 053815
[22] Bendickson J M, Dowling J P, Scalora M 1996 Phys. Rev. E 53 4107
[23] Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859
计量
- 文章访问数: 6162
- PDF下载量: 51
- 被引次数: 0