搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃基底Wolter-1型X射线聚焦镜研制及测试

李林森 强鹏飞 盛立志 刘哲 周晓红 赵宝升 张淳民

引用本文:
Citation:

玻璃基底Wolter-1型X射线聚焦镜研制及测试

李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民

Development and testing of glass substrate Wolter-1 X-ray focusing mirror

Li Lin-Sen, Qiang Peng-Fei, Sheng Li-Zhi, Liu Zhe, Zhou Xiao-Hong, Zhao Bao-Sheng, Zhang Chun-Min
PDF
导出引用
  • Wolter-1型X射线聚焦镜可将掠入射的X射线反射至焦平面处,具有较强的成像探测能力,在天文探测等领域中具有重要作用.通过建立几何模型对反射镜面及反射光线方程进行理论计算,推导出了适用于以玻璃为基底材料的聚焦镜设计参数方程,可用于对此类聚焦镜进行理论设计,依据理论设计,采用具有极高表面光洁度的超薄肖特D263T玻璃经热弯成型后作为反射镜基底,在反射镜表面制备金属铱薄膜作为反射膜研制了Wolter-1型反射镜组,并使用激光三维扫描仪对所研制的聚焦镜片面型进行了测试.测试结果显示,实际镜片面型与理想镜片面型公差在10 m以内的测试点占总测试点的50%.通过搭建可见光条件下的焦斑测试系统,使用图像采集相机采集焦斑的灰度图像,通过图像分析软件分析计算该灰度图像的灰度分布来定量分析焦斑的能量分布情况,从而确定焦斑特性参数.实验结果显示:研制出的聚焦镜片焦距为1.6 m,焦斑的半能量包围直径为0.33 mm,对应角分辨率为0.7角分.
    The wolter-1 X-ray focusing mirror can reflect grazing incidence X-ray to the focal plane, which plays an important role in the astronomical detection and other fields due to its good image detecting capability. A geometric model of the optical system is established for theoretically deriving the optical path equations which is useful in this glass based focusing mirror designing, all the design parameters of the focusing mirror can be obtained by solving these equations. In the manufacturing process, the D263T glass is chosen to be the structural material of the focusing mirror due to its light weight and super smooth surface, after a slumping process, the flat glass mirror will have the shape of Wolter-1 X-ray focusing mirror. This slumping process has been used successfully in the manufacturing process of an American mission named The Nuclear Spectroscopic Telescope Array, which was launched in 2012. According to X-ray reflecting theory, the reflectivity of the Wolter-1 mirror can be improved significantly by coating metal film on the surface of the mirror. In this work, an iridium film is coated on the surface of the glass mirror through a vacuum evaporating process. In order to learn the influence of the focal spot caused by the mirror shape tolerance, the morphology of the mirror is tested by using a 3-D laser scan instrument. The results show that 50% of the total test points are located in the tolerance range of-10-10 m, in which the tolerance represents the difference between the actual lens profile and the ideal lens profile. Then the focal spot test is carried out with the help of a visible light test system:a laser collimator is installed in front of focusing mirror as an incidence light source, and a charge coupled device (CCD) is placed in the focal plane to gather the image of the focal spot, by calculating the gray level distribution of the focal spot image taken by the CCD, the energy distribution characteristic of focal spot can be obtained. The experimental results show that the focal length of the focusing mirror is 1.6 m, and the half-power surrounding diameter of the focal spot is 0.33 mm, corresponding to the angular resolution of 0.7 arc min.
      通信作者: 强鹏飞, qiangpengfei@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61471357)资助的课题.
      Corresponding author: Qiang Peng-Fei, qiangpengfei@opt.ac.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 61471357).
    [1]

    Keith C G, Zaven A, Takanshi O 2016 Proc. SPIE 9905 49

    [2]

    Gregory P, Keith G, John P D, Richard F, Ronald R, Andrew M, Beverly L, Michael V, Mark E, Jesus V, Zaven A, Wayne B, Frank S, Christian L, Michael K, Alan H 2016 Proc. SPIE 9905 50

    [3]

    Beverly L, Gregory P, Ronald R, Andrew M, Keith C G, Zaven A, Craig B M, Wayne H B 2016 Proc. SPIE 9905 228

    [4]

    Takashi O, Yang S, Erin R B, Teruaki E, Larry O, Richard K, Larry L, John K, Sean F, Ai N, Steven J K, Zaven A, Keith G 2016 Proc. SPIE 9905 99054X-1

    [5]

    Jason E K, Hongjun A, Kenneth L B, Nicolai F B, Finn E C, William W C, Todd A D, Charles J H, Layton C H, Fiona A H, Carsten P J, Kristin K M, Kaya M, Michael J P, Gordon T, William W Z 2009 Proc. SPIE 7437 74370C-1

    [6]

    Jason E K, Finn E C, William W C, Todd R D, Charles J H, Fiona A H, Colin H, Carsten P J, Kristin K M, Marcela S, Gordon T, Michael D T 2005 Proc. SPIE 5900 79000X

    [7]

    Jensen C P, Christensen F E, Jensen A, Madsen K K 2005 Proc. SPIE 5900 5900-07

    [8]

    Koglin J E, Chen C M H, Christensen F E, Chonko J, Craig W W, Decker T R, Gunderson K S, Hailey C J, Harrison F A, Jensen C P, Madsen M, Stern M, Windt D L, Ziegler H Y 2004 Proc. SPIE 5168 100

    [9]

    Yuan W M, Zhang C, Chen Y, et al. 2018 Sci. Sin.: Phys. Mech. Astron. 48 039502

    [10]

    Li Z Y 2018 Sci. Sin.: Phys. Mech. Astron. 48 039512

    [11]

    Xue Y Q, Shu X W, Zhou X L, Zhang J, Wu X B, Wang J X, Wang T G, Yuan F, Luo B, Pan H W 2018 Sci. Sin.: Phys. Mech. Astron. 48 039508

    [12]

    Zhang S N 2017 Academic Annual Conference Wulumuqi August 8 2017 p5

    [13]

    Li C Y 2018 Chinese J. Space Science 3 273

    [14]

    Liu D, Qiang P F, Li L S, Su T, Sheng L Z, Liu Y A, Zhao B S 2016 Acta Phys. Sin. 65 010703 (in Chinese)[刘舵, 强鹏飞, 李林森, 苏桐, 盛立志, 刘永安, 赵宝升 2016 65 010703]

    [15]

    Liu D, Qiang P F, Li L S, Liu Z, Sheng L Z, Liu Y A, Zhao B S 2016 Acta Opt. Sin. 36 0834002 (in Chinese)[刘舵, 强鹏飞, 李林森, 刘哲, 盛立志, 刘永安, 赵宝升 2016 光学学报 36 0834002]

    [16]

    Li L S, Qiang P F, Sheng L Z, Liu Y A, Liu Z, Liu D, Zhao B S, Zhang C M 2017 Chin. Phys. B 26 100703

    [17]

    William W C, Hong J A, Kenneth L B, Finn E C, Todd A D, Anne F, Jeff G, Charles J H, Layton H, Carsten B J, Jason E K, Kaya M, Melanie N, Michael J P, Marton V S, Marcela S, Gordon T, William W Z 2011 Proc. SPIE 8147 81470H

    [18]

    William W Z 2009 Proc. SPIE 7437 74370N

    [19]

    William W Z, David A C, John P L, Robert P, Timo T S, Mikhail G, William D J, Stephen L O 2005 Proc. SPIE 5900 59000V

    [20]

    Finn E C, Anders C J, Nicolai F B, Kristin K M, Allan H, Niels J W, Joan M, Jason K, Anne M F, Marcela S, William W C, Michael J P, David W 2011 Proc. SPIE 8147 81470U

    [21]

    Vikram R R, Walter R C, Fiona A H, Peter H M, Hiromasa M 2009 Proc. SPIE 7435 743503

    [22]

    Li L S, Liu Y A, Kong L G, Liu D, Qiang P F, Zhao B S 2016 Acta Photonic Sin. 45 41 (in Chinese)[李林森, 刘永安, 孔令高, 刘舵, 强鹏飞, 赵宝升 2016 光子学报 45 41]

  • [1]

    Keith C G, Zaven A, Takanshi O 2016 Proc. SPIE 9905 49

    [2]

    Gregory P, Keith G, John P D, Richard F, Ronald R, Andrew M, Beverly L, Michael V, Mark E, Jesus V, Zaven A, Wayne B, Frank S, Christian L, Michael K, Alan H 2016 Proc. SPIE 9905 50

    [3]

    Beverly L, Gregory P, Ronald R, Andrew M, Keith C G, Zaven A, Craig B M, Wayne H B 2016 Proc. SPIE 9905 228

    [4]

    Takashi O, Yang S, Erin R B, Teruaki E, Larry O, Richard K, Larry L, John K, Sean F, Ai N, Steven J K, Zaven A, Keith G 2016 Proc. SPIE 9905 99054X-1

    [5]

    Jason E K, Hongjun A, Kenneth L B, Nicolai F B, Finn E C, William W C, Todd A D, Charles J H, Layton C H, Fiona A H, Carsten P J, Kristin K M, Kaya M, Michael J P, Gordon T, William W Z 2009 Proc. SPIE 7437 74370C-1

    [6]

    Jason E K, Finn E C, William W C, Todd R D, Charles J H, Fiona A H, Colin H, Carsten P J, Kristin K M, Marcela S, Gordon T, Michael D T 2005 Proc. SPIE 5900 79000X

    [7]

    Jensen C P, Christensen F E, Jensen A, Madsen K K 2005 Proc. SPIE 5900 5900-07

    [8]

    Koglin J E, Chen C M H, Christensen F E, Chonko J, Craig W W, Decker T R, Gunderson K S, Hailey C J, Harrison F A, Jensen C P, Madsen M, Stern M, Windt D L, Ziegler H Y 2004 Proc. SPIE 5168 100

    [9]

    Yuan W M, Zhang C, Chen Y, et al. 2018 Sci. Sin.: Phys. Mech. Astron. 48 039502

    [10]

    Li Z Y 2018 Sci. Sin.: Phys. Mech. Astron. 48 039512

    [11]

    Xue Y Q, Shu X W, Zhou X L, Zhang J, Wu X B, Wang J X, Wang T G, Yuan F, Luo B, Pan H W 2018 Sci. Sin.: Phys. Mech. Astron. 48 039508

    [12]

    Zhang S N 2017 Academic Annual Conference Wulumuqi August 8 2017 p5

    [13]

    Li C Y 2018 Chinese J. Space Science 3 273

    [14]

    Liu D, Qiang P F, Li L S, Su T, Sheng L Z, Liu Y A, Zhao B S 2016 Acta Phys. Sin. 65 010703 (in Chinese)[刘舵, 强鹏飞, 李林森, 苏桐, 盛立志, 刘永安, 赵宝升 2016 65 010703]

    [15]

    Liu D, Qiang P F, Li L S, Liu Z, Sheng L Z, Liu Y A, Zhao B S 2016 Acta Opt. Sin. 36 0834002 (in Chinese)[刘舵, 强鹏飞, 李林森, 刘哲, 盛立志, 刘永安, 赵宝升 2016 光学学报 36 0834002]

    [16]

    Li L S, Qiang P F, Sheng L Z, Liu Y A, Liu Z, Liu D, Zhao B S, Zhang C M 2017 Chin. Phys. B 26 100703

    [17]

    William W C, Hong J A, Kenneth L B, Finn E C, Todd A D, Anne F, Jeff G, Charles J H, Layton H, Carsten B J, Jason E K, Kaya M, Melanie N, Michael J P, Marton V S, Marcela S, Gordon T, William W Z 2011 Proc. SPIE 8147 81470H

    [18]

    William W Z 2009 Proc. SPIE 7437 74370N

    [19]

    William W Z, David A C, John P L, Robert P, Timo T S, Mikhail G, William D J, Stephen L O 2005 Proc. SPIE 5900 59000V

    [20]

    Finn E C, Anders C J, Nicolai F B, Kristin K M, Allan H, Niels J W, Joan M, Jason K, Anne M F, Marcela S, William W C, Michael J P, David W 2011 Proc. SPIE 8147 81470U

    [21]

    Vikram R R, Walter R C, Fiona A H, Peter H M, Hiromasa M 2009 Proc. SPIE 7435 743503

    [22]

    Li L S, Liu Y A, Kong L G, Liu D, Qiang P F, Zhao B S 2016 Acta Photonic Sin. 45 41 (in Chinese)[李林森, 刘永安, 孔令高, 刘舵, 强鹏飞, 赵宝升 2016 光子学报 45 41]

  • [1] 汪书兴, 李天钧, 黄新朝, 朱林繁. 内壳层体系的X射线腔量子光学.  , 2024, 73(24): 1-26. doi: 10.7498/aps.73.20241218
    [2] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析.  , 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [3] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价.  , 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [4] 姜其立, 段泽明, 帅麒麟, 李融武, 潘秋丽, 程琳. 一种毛细管聚焦的微束X射线衍射仪.  , 2019, 68(24): 240701. doi: 10.7498/aps.68.20190497
    [5] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红. X射线聚焦望远镜光学设计.  , 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [6] 周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰. 一种聚焦型X射线探测器在轨性能标定方法.  , 2018, 67(5): 050701. doi: 10.7498/aps.67.20172352
    [7] 刘舵, 强鹏飞, 李林森, 苏桐, 盛立志, 刘永安, 赵宝升. 一种X射线聚焦光学及其在X射线通信中的应用.  , 2016, 65(1): 010703. doi: 10.7498/aps.65.010703
    [8] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能.  , 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [9] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱.  , 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [10] 李佳, 房奇, 罗炳池, 周民杰, 李恺, 吴卫东. Be薄膜应力的X射线掠入射侧倾法分析.  , 2013, 62(14): 140701. doi: 10.7498/aps.62.140701
    [11] 张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青. Arq+入射金表面激发靶原子M-X射线的动能和势能的阈值.  , 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [12] 乐孜纯, 张明, 董文, 全必胜, 刘魏, 刘恺. 制作工艺误差对X射线组合折射透镜聚焦性能影响研究.  , 2010, 59(9): 6284-6289. doi: 10.7498/aps.59.6284
    [13] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究.  , 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [14] 潘志云, 孙治湖, 谢 治, 闫文盛, 韦世强. Si/Gen/Si(001)异质结薄膜的掠入射荧光X射线吸收精细结构研究.  , 2007, 56(6): 3344-3349. doi: 10.7498/aps.56.3344
    [15] 燕 飞, 张 杰, 董全力, 鲁 欣, 李英骏. 掠入射驱动产生x射线激光的数值模拟.  , 2005, 54(10): 4741-4746. doi: 10.7498/aps.54.4741
    [16] 陈 敏, 肖体乔, 骆玉宇, 刘丽想, 魏 逊, 杜国浩, 徐洪杰. 微聚焦管硬x射线位相衬度成像.  , 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [17] 白海力, 姜恩永, 王存达, 田仁玉. 热处理Co/C软X射线多层膜的掠入射反射率增强.  , 1997, 46(4): 732-739. doi: 10.7498/aps.46.732
    [18] 何绍堂, 何安, 淳于书泰, 张启仁, 顾元元, 倪元龙, 余松玉, 周正良. 类氖锗X射线激光光学特性研究.  , 1992, 41(4): 573-577. doi: 10.7498/aps.41.573
    [19] 何安, 何绍堂, 淳于书泰, 方泉玉, 邹喻, 徐远光. 线聚焦激光辐照Al靶所产生的紫外X射线谱线.  , 1991, 40(11): 1765-1770. doi: 10.7498/aps.40.1765
    [20] 郭常霖. X射线单色四重聚焦照相机单色器的衍射几何.  , 1980, 29(9): 1217-1221. doi: 10.7498/aps.29.1217
计量
  • 文章访问数:  6532
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-09
  • 修回日期:  2018-07-25
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map