搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

五阶压控忆阻蔡氏混沌电路的双稳定性

林毅 刘文波 沈骞

引用本文:
Citation:

五阶压控忆阻蔡氏混沌电路的双稳定性

林毅, 刘文波, 沈骞

Bi-stability in a fifth-order voltage-controlled memristor-based Chua's chaotic circuit

Lin Yi, Liu Wen-Bo, Shen Qian
PDF
导出引用
  • 通过在蔡氏电路的耦合电阻支路中串联一个电感,采用压控忆阻替换蔡氏电路中的蔡氏二极管,提出了一种新颖的五阶压控忆阻蔡氏混沌电路.建立该电路的数学模型,从理论上分析了平衡点及其稳定性的演化过程.特别地,该电路在给定参数下只有一个不稳定的零平衡点,却形成了混沌与周期的非对称吸引子共存的吸引盆,意味着双稳定性的存在.进而利用数值仿真与PSIM电路仿真着重研究了本文电路在不同初始状态下产生的双稳定性现象及其形成机理.PSIM电路仿真结果与数值仿真结果一致,较好地验证了理论分析.借助分岔图、李雅普诺夫指数、相轨图和吸引盆进一步深入探讨了归一化五阶压控忆阻蔡氏系统依赖于系统初始条件的动力学行为.结果表明,该忆阻蔡氏系统在不同的初始条件下能够呈现出混沌吸引子与周期极限环共存的双稳定性现象.
    Generally, the occurrence of multiple attractors indicates that the multi-stability existing in a nonlinear dynamical system and the long-time motion behavior are essentially different, depending on which basin of attraction the initial condition belongs to. Up to now, due to the emergence of multi-stability, some particular memristor-based nonlinear circuits whose dynamical behaviors are extremely related to memristor initial conditions or other initial conditions have attracted considerable attention. By replacing linear or nonlinear resistors with memristor emulators in some already-existing oscillating circuits or introducing memristor emulators with different nonlinearities into these oscillating circuits, various memristor-based nonlinear dynamical circuits have been constructed and broadly investigated. Motivated by these considerations, we present a novel fifth-order voltage-controlled memristor-based Chua's chaotic circuit in this paper, from which a wonderful phenomenon of bi-stability is well demonstrated by numerical simulations and PSIM circuit simulations. Note that the bi-stability is a special kind of multi-stability, which is rarely reported in the memristor-based chaotic circuits.
    The proposed memristor-based Chua's chaotic circuit is constructed by inserting an inductor into the coupled resistor branch in series and substituting the Chua's diode with a voltage-controlled memristor in the classical Chua's circuit. Five-dimensional system model is established, of which the equilibrium point and its stability are investigated. Theoretical derivation results indicate that the proposed circuit owns one or three equilibrium points related to the circuit parameters. Especially, unlike the newly reported memristive circuit with bi-stability, the proposed memristor-based Chua's chaotic circuit has only one zero equilibrium point under the given parameters, but it can generate coexistent chaotic and periodic behaviors, and the bi-stability occurs in such a memristive Chua's circuit. By theoretical analyses, numerical simulations and PSIM circuit simulations, the bi-stability phenomenon of coexistent chaotic attractors and periodic limit cycles with different initial conditions and their formation mechanism are revealed and expounded. Besides, with the dimensionless system equations, the corresponding initial condition-dependent dynamical behaviors are further numerically explored through bifurcation diagram, Lyapunov exponents, phased portraits and attraction basin. Numerical simulation results demonstrate that the proposed memristive Chua's system can generate bi-stability under different initial conditions. The PSIM circuit simulations and numerical simulations are consistent well with each other, which perfectly verifies the theoretical analyses.
    • 基金项目: 国家自然科学基金(批准号:61471191)和航空科学基金(批准号:20152052026)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471191) and the Aeronautical Science Foundation of China (Grant No. 20152052026).
    [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422

    [4]

    Yu D S, Iu H H C, Fitch A L, Liang Y 2014 IEEE Trans. Circuits Syst. I: Regular Papers 61 2888

    [5]

    Sánchez-López C, Mendoza-López J, Carrasco-Aguilar M A, Muñiz-Montero C 2014 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 61 309

    [6]

    Yang C, Choi H, Park S, Sah M P, Kim H, Chua L O 2015 Semicond. Sci. Technol. 30 015007

    [7]

    Yu D S, Zheng C Y, Iu H H C, Fernando T, Chua L O 2017 IEEE Access 5 1284

    [8]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [9]

    Bao B C, Yu J J, Hu F W, Liu Z 2014 Int. J. Bifurcation Chaos 24 1450143

    [10]

    Wu H G, Bao B C, Liu Z, Xu Q, Jiang P 2016 Nonlinear Dyn. 83 893

    [11]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitons Fractals 83 186

    [12]

    Bao B C, Wang N, Xu Q, Wu H G, Hu Y H 2017 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 64 977

    [13]

    Xu Q, Zhang Q L, Bao B C, Hu Y H 2017 IEEE Access 5 21039

    [14]

    Chen M, Yu J J, Bao B C 2015 Electron. Lett. 51 462

    [15]

    Chen M, Li M Y, Yu Q, Bao B C, Xu Q, Wang J 2015 Nonlinear Dyn. 81 215

    [16]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [17]

    Bao B C, Jiang P, Wu H G, Hu F W 2015 Nonlinear Dyn. 79 2333

    [18]

    Fitch A L, Yu D S, Iu H H C, Sreeram V 2012 Int. J. Bifurcation Chaos 22 1250133

    [19]

    Bao B C, Ma Z H, Xu J P, Liu Z, Xu Q 2011 Int. J. Bifurcation Chaos 21 2629

    [20]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [21]

    Zhao Y B, Zhang X Z, Xu J, Guo Y C 2015 Chaos, Solitons Fractals 81 315

    [22]

    Bao B C, Hu F W, Chen M, Xu Q, Yu Y J 2015 Int. J. Bifurcation Chaos 25 1550075

    [23]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034

    [24]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [25]

    Wei Z C, Wang R R, Liu A P 2014 Math. Comput. Simulat. 100 13

    [26]

    Bao B C, Wu H G, Xu L, Chen M, Hu W 2018 Int. J. Bifurcation Chaos 28 1850019

    [27]

    Richter H 2008 Chaos, Solitons Fractals 36 559

    [28]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126

    [29]

    Bao H, Wang N, Wu H G, Song Z, Bao B C 2018 IETE Tech. Rev. 6 1

    [30]

    Feudel U 2008 Int. J. Bifurcation Chaos 18 1607

    [31]

    Chen M, Sun M X, Bao B C, Wu H G, Xu Q, Wang J 2018 Nonlinear Dyn. 91 1395

    [32]

    Morfu S, Nofiele B, Marquié P 2007 Phys. Lett. A 367 192

    [33]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [34]

    Chua L O 2012 Proc. IEEE 100 1920

    [35]

    Ma J, Chen Z Q, Wang Z L, Zhang Q 2015 Nonlinear Dyn. 81 1275

    [36]

    Bao B C, Jiang T, Xu Q, Chen M, Wu H G, Hu Y H 2016 Nonlinear Dyn. 86 1711

    [37]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

  • [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422

    [4]

    Yu D S, Iu H H C, Fitch A L, Liang Y 2014 IEEE Trans. Circuits Syst. I: Regular Papers 61 2888

    [5]

    Sánchez-López C, Mendoza-López J, Carrasco-Aguilar M A, Muñiz-Montero C 2014 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 61 309

    [6]

    Yang C, Choi H, Park S, Sah M P, Kim H, Chua L O 2015 Semicond. Sci. Technol. 30 015007

    [7]

    Yu D S, Zheng C Y, Iu H H C, Fernando T, Chua L O 2017 IEEE Access 5 1284

    [8]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [9]

    Bao B C, Yu J J, Hu F W, Liu Z 2014 Int. J. Bifurcation Chaos 24 1450143

    [10]

    Wu H G, Bao B C, Liu Z, Xu Q, Jiang P 2016 Nonlinear Dyn. 83 893

    [11]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitons Fractals 83 186

    [12]

    Bao B C, Wang N, Xu Q, Wu H G, Hu Y H 2017 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 64 977

    [13]

    Xu Q, Zhang Q L, Bao B C, Hu Y H 2017 IEEE Access 5 21039

    [14]

    Chen M, Yu J J, Bao B C 2015 Electron. Lett. 51 462

    [15]

    Chen M, Li M Y, Yu Q, Bao B C, Xu Q, Wang J 2015 Nonlinear Dyn. 81 215

    [16]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [17]

    Bao B C, Jiang P, Wu H G, Hu F W 2015 Nonlinear Dyn. 79 2333

    [18]

    Fitch A L, Yu D S, Iu H H C, Sreeram V 2012 Int. J. Bifurcation Chaos 22 1250133

    [19]

    Bao B C, Ma Z H, Xu J P, Liu Z, Xu Q 2011 Int. J. Bifurcation Chaos 21 2629

    [20]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [21]

    Zhao Y B, Zhang X Z, Xu J, Guo Y C 2015 Chaos, Solitons Fractals 81 315

    [22]

    Bao B C, Hu F W, Chen M, Xu Q, Yu Y J 2015 Int. J. Bifurcation Chaos 25 1550075

    [23]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034

    [24]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [25]

    Wei Z C, Wang R R, Liu A P 2014 Math. Comput. Simulat. 100 13

    [26]

    Bao B C, Wu H G, Xu L, Chen M, Hu W 2018 Int. J. Bifurcation Chaos 28 1850019

    [27]

    Richter H 2008 Chaos, Solitons Fractals 36 559

    [28]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126

    [29]

    Bao H, Wang N, Wu H G, Song Z, Bao B C 2018 IETE Tech. Rev. 6 1

    [30]

    Feudel U 2008 Int. J. Bifurcation Chaos 18 1607

    [31]

    Chen M, Sun M X, Bao B C, Wu H G, Xu Q, Wang J 2018 Nonlinear Dyn. 91 1395

    [32]

    Morfu S, Nofiele B, Marquié P 2007 Phys. Lett. A 367 192

    [33]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [34]

    Chua L O 2012 Proc. IEEE 100 1920

    [35]

    Ma J, Chen Z Q, Wang Z L, Zhang Q 2015 Nonlinear Dyn. 81 1275

    [36]

    Bao B C, Jiang T, Xu Q, Chen M, Wu H G, Hu Y H 2016 Nonlinear Dyn. 86 1711

    [37]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

  • [1] 吕晏旻, 闵富红. 基于现场可编程逻辑门阵列的磁控忆阻电路对称动力学行为分析.  , 2019, 68(13): 130502. doi: 10.7498/aps.68.20190453
    [2] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现.  , 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [3] 马美玲, 闵富红, 邵书义, 黄苗玉. 基于符号函数的注入反馈式蔡氏电路同步控制.  , 2014, 63(1): 010507. doi: 10.7498/aps.63.010507
    [4] 张新国, 孙洪涛, 赵金兰, 刘冀钊, 马义德, 韩廷武. 蔡氏电路的功能全同电路与拓扑等效电路及其设计方法.  , 2014, 63(20): 200503. doi: 10.7498/aps.63.200503
    [5] 陈红, 吴玲. 设计和实现三维空间任意庞加莱截平面电路.  , 2013, 62(2): 020507. doi: 10.7498/aps.62.020507
    [6] 寻之朋, 唐刚, 夏辉, 郝大鹏. 1+1 维抛射沉积模型内部结构动力学行为的数值研究.  , 2013, 62(1): 010503. doi: 10.7498/aps.62.010503
    [7] 许碧荣. 一种最简的并行忆阻器混沌系统.  , 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [8] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波.  , 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [9] 余跃, 张春, 韩修静, 毕勤胜. 两子系统在周期切换连接下的振荡行为及其机理.  , 2012, 61(20): 200507. doi: 10.7498/aps.61.200507
    [10] 陈仕必, 曾以成, 徐茂林, 陈家胜. 用多项式和阶跃函数构造网格多涡卷混沌吸引子及其电路实现.  , 2011, 60(2): 020507. doi: 10.7498/aps.60.020507
    [11] 杨志民, 张洁, 马永杰, 摆玉龙, 马胜前. 基于电流传输器的蔡氏混沌电路的设计和实现.  , 2010, 59(5): 3007-3016. doi: 10.7498/aps.59.3007
    [12] 包伯成, 刘中, 许建平. 忆阻混沌振荡器的动力学分析.  , 2010, 59(6): 3785-3793. doi: 10.7498/aps.59.3785
    [13] 施华萍, 柯见洪, 孙策, 林振权. 中国人口分布规律及演化机理研究.  , 2009, 58(1): 1-8. doi: 10.7498/aps.58.1.1
    [14] 冯朝文, 蔡 理, 康 强. 基于单电子器件的混沌电路研究.  , 2008, 57(10): 6155-6161. doi: 10.7498/aps.57.6155
    [15] 刘 凌, 苏燕辰, 刘崇新. 新三维混沌系统及其电路仿真实验.  , 2007, 56(4): 1966-1970. doi: 10.7498/aps.56.1966
    [16] 刘崇新. 一个超混沌系统及其分数阶电路仿真实验.  , 2007, 56(12): 6865-6873. doi: 10.7498/aps.56.6865
    [17] 刘 凌, 苏燕辰, 刘崇新. 一个新混沌系统及其电路仿真实验.  , 2006, 55(8): 3933-3937. doi: 10.7498/aps.55.3933
    [18] 李 亚, 禹思敏, 戴青云, 刘明华, 刘 庆. 一种新的蔡氏电路设计方法与硬件实现.  , 2006, 55(8): 3938-3944. doi: 10.7498/aps.55.3938
    [19] 李建芬, 李 农, 林 辉. 适合传输快变信息信号的混沌调制保密通信.  , 2004, 53(6): 1694-1698. doi: 10.7498/aps.53.1694
    [20] 冯培成, 唐翌. 扭结孤子牛顿动力学行为的奇异摄动理论.  , 2001, 50(7): 1213-1216. doi: 10.7498/aps.50.1213
计量
  • 文章访问数:  6315
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-04
  • 修回日期:  2018-08-29
  • 刊出日期:  2018-12-05

/

返回文章
返回
Baidu
map