搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偶极玻色-爱因斯坦凝聚体在类方势阱中的Bénard-von Kármán涡街

席忠红 杨雪滢 唐娜 宋琳 李晓霖 石玉仁

引用本文:
Citation:

偶极玻色-爱因斯坦凝聚体在类方势阱中的Bénard-von Kármán涡街

席忠红, 杨雪滢, 唐娜, 宋琳, 李晓霖, 石玉仁

Bénard-von Kármán vortex street in dipolar Bose-Einstein condensate trapped by square-like potential

Xi Zhong-Hong, Yang Xue-Ying, Tang Na, Song Lin, Li Xiao-Lin, Shi Yu-Ren
PDF
导出引用
  • 对偶极玻色-爱因斯坦凝聚体(Bose-Einstein condensate,BEC)在类方势阱中的Bénard-von Kármán涡街现象进行了数值研究.结果表明,当障碍势在BEC中的运动速度与尺寸在适当范围内时,系统中会出现稳定的两列涡旋对阵列,即Bénard-von Kármán涡街.研究了偶极相互作用强弱、障碍势尺寸以及运动速度对尾流中产生的涡旋结构的影响,得到了相图结构.对障碍势所受拖拽力进行计算,分析了涡旋对产生的力学机理.
    Bénard-von Kármán vortex street in dipolar Bose-Einstein Condensate (BEC) trapped by a square-like potential is investigated numerically. In the frame of mean-field theory, the nonlinear dynamic of the dipolar BEC can be described by the so-called two-dimensional Gross-Pitaevskii (GP) equation with long-range interaction. In this paper, we only consider the case that all the dipoles are polarized along the z-axis, which is perpendicular to the plane of disc-shaped BEC. Firstly, the stationary state of the BEC is obtained by the imaginary-time propagation approach. Secondly, the nonlinear dynamic of the BEC, when a moving Gaussian potential exists in such a system, is numerically investigated by the time-splitting Fourier spectral method, in which the stationary state obtained before is set to be the initial state. The results show that when the velocity of the cylindrical obstacle potential reaches a critical value, which depends on interaction strength and the shape of the potential, the vortex-antivortex pairs will be generated alternately in the super-flow behind the obstacle potential. However, in general, such a vortex-antivortex pair structure is dynamically unstable. When the velocity of the obstacle potential increases to a certain value and for a suitable potential width, a stable vortex structure called Bénard-von Kármán vortex street will be formed. While this phenomenon emerges, the vortices in pairs created by the obstacle potential have the same circulation. The pairs with opposite circulations are alternately released from the moving obstacle potential. For larger potential width and velocity, the shedding pattern becomes irregular. We also numerically investigate the effects of the dipole interaction strength, the width and the velocity of the obstacle potential on the vortex structures arising in the wake flow. As a result, the phase graph is presented by lots of numerical calculations for a group of given physical parameters. Thirdly, the drag force on the obstacle potential is also calculated and the mechanical mechanism of vortex pair is analyzed. Finally, we discuss how to find the phenomenon of Bénard-von Kármán vortex street in dipolar BEC experimentally.
    • 基金项目: 国家自然科学基金(批准号:11565021,11047010)、西北师范大学青年教师科研能力提升计划项目(批准号:NWNU-LKQN-16-3)、甘肃民族师范学院学术带头人、双骨干项目建设计划(批准号:GSNU-SHGG-1806)和甘肃民族师范学院校长基金项目(批准号:GSNUXM16-44)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of P. R. China (Grant Nos.11565021, 11047010), the Scientific Research Foundation of Northwest Normal University (Grant No. NWNU-LKQN-16-3), the Scientific Research Foundation of Gansu Normal University for Nationalities (Grant Nos.GSNU-SHGG-1806, GSNUXM16-44).
    [1]

    Wang D S, Song S W, Xiong B, Liu W M 2011 Phys. Rev. A 84 053607

    [2]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402

    [3]

    Abrikosov A A, Eksp Z 1957 Phys. JETP 5 1174

    [4]

    Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001 Sci. 292 476

    [5]

    Wang L X, Dong B, Chen G P, Han W, Zhang S G, Shi Y R, Zhang X F 2016 Phys. Lett. A 380 435

    [6]

    Bénard H, Acad C R 1908 Science 147 839

    [7]

    von Kármán T, Gottingen N G W 1911 Math. Phys. Kl. 509 721

    [8]

    Williamson C H K 1996 Annu. Rev. Fluid Mech. 28 477

    [9]

    Barenghi C F 2008 Physica D 237 2195

    [10]

    Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2016 Phys. Rev. Lett. 24 117

    [11]

    Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. Lett. 104 150404

    [12]

    Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2014 Phys. Rev. A 90 063627

    [13]

    Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 92 033613

    [14]

    Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 91 053615

    [15]

    Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. A 83 033602

    [16]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [17]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [18]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [19]

    Yi S, You L 2000 Phys. Rev. A 61 041604

    [20]

    Marinescu M, You L 1998 Phys. Rev. Lett. 81 4596

    [21]

    Deb B, You L 2001 Phys. Rev. A 64 022717

    [22]

    Cai Y Y, Matthias R, Lei Z, Bao W Z 2010 Phys. Rev. A 82 043623

    [23]

    Nath R, Pedri P, Santos L 2009 Phys. Rev. Lett. 102 050401

    [24]

    Giovanazzi S, Gorlitz A, Pfau T 2002 Phys. Rev. Lett. 89 130401

    [25]

    Pedri P, Santos L 2005 Phys. Rev. Lett. 95 200404

    [26]

    Bao W, Chem L L, Lim F Y 2006 J. Comput. Phys. 219 836

    [27]

    Bao W, Wang H 2006 J. Comput. Phys. 217 612

    [28]

    Mou S, Guo K X, Xiao B 2014 Superlattices Microstruct. 65 309

    [29]

    Finne A P, Araki T, Blaauwgeers R, Eltsov V B, Kopnin N B, Kruslus M, Skrbek L, Tsubota M, Volovikand G E 2003 Nature 424 1022

    [30]

    Nore C, Huepe C, Brachet M E 2000 Phys. Rev. Lett. 84 2191

    [31]

    Volovik G E 2003 JETP Lett. 78 533

    [32]

    Inouye S, Gupta S, Rosenband T, Chikkatur A P, orlitz A G, Gustavson T L, Leanhardt A E, Pritchard D E, Ketterle W 2001 Phys. Rev. Lett. 87 080402

    [33]

    Neely T W, Samson E C, Bradley A S, Davis M J 2010 Phys. Rev. Lett. 104 160401

    [34]

    Stagg G W, Allen A J, Barenghi C F, Parker N G 2015 J. Phys.: Conf. Ser. 594 012044

    [35]

    Reeves M T, Anderson B P, Bradley A S 2012 Phys. Rev. A 86 053621

    [36]

    Kadokura T, Yoshida J, Saito H 2014 Phys. Rev. A 90 013612

  • [1]

    Wang D S, Song S W, Xiong B, Liu W M 2011 Phys. Rev. A 84 053607

    [2]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402

    [3]

    Abrikosov A A, Eksp Z 1957 Phys. JETP 5 1174

    [4]

    Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001 Sci. 292 476

    [5]

    Wang L X, Dong B, Chen G P, Han W, Zhang S G, Shi Y R, Zhang X F 2016 Phys. Lett. A 380 435

    [6]

    Bénard H, Acad C R 1908 Science 147 839

    [7]

    von Kármán T, Gottingen N G W 1911 Math. Phys. Kl. 509 721

    [8]

    Williamson C H K 1996 Annu. Rev. Fluid Mech. 28 477

    [9]

    Barenghi C F 2008 Physica D 237 2195

    [10]

    Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2016 Phys. Rev. Lett. 24 117

    [11]

    Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. Lett. 104 150404

    [12]

    Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2014 Phys. Rev. A 90 063627

    [13]

    Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 92 033613

    [14]

    Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 91 053615

    [15]

    Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. A 83 033602

    [16]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [17]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [18]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [19]

    Yi S, You L 2000 Phys. Rev. A 61 041604

    [20]

    Marinescu M, You L 1998 Phys. Rev. Lett. 81 4596

    [21]

    Deb B, You L 2001 Phys. Rev. A 64 022717

    [22]

    Cai Y Y, Matthias R, Lei Z, Bao W Z 2010 Phys. Rev. A 82 043623

    [23]

    Nath R, Pedri P, Santos L 2009 Phys. Rev. Lett. 102 050401

    [24]

    Giovanazzi S, Gorlitz A, Pfau T 2002 Phys. Rev. Lett. 89 130401

    [25]

    Pedri P, Santos L 2005 Phys. Rev. Lett. 95 200404

    [26]

    Bao W, Chem L L, Lim F Y 2006 J. Comput. Phys. 219 836

    [27]

    Bao W, Wang H 2006 J. Comput. Phys. 217 612

    [28]

    Mou S, Guo K X, Xiao B 2014 Superlattices Microstruct. 65 309

    [29]

    Finne A P, Araki T, Blaauwgeers R, Eltsov V B, Kopnin N B, Kruslus M, Skrbek L, Tsubota M, Volovikand G E 2003 Nature 424 1022

    [30]

    Nore C, Huepe C, Brachet M E 2000 Phys. Rev. Lett. 84 2191

    [31]

    Volovik G E 2003 JETP Lett. 78 533

    [32]

    Inouye S, Gupta S, Rosenband T, Chikkatur A P, orlitz A G, Gustavson T L, Leanhardt A E, Pritchard D E, Ketterle W 2001 Phys. Rev. Lett. 87 080402

    [33]

    Neely T W, Samson E C, Bradley A S, Davis M J 2010 Phys. Rev. Lett. 104 160401

    [34]

    Stagg G W, Allen A J, Barenghi C F, Parker N G 2015 J. Phys.: Conf. Ser. 594 012044

    [35]

    Reeves M T, Anderson B P, Bradley A S 2012 Phys. Rev. A 86 053621

    [36]

    Kadokura T, Yoshida J, Saito H 2014 Phys. Rev. A 90 013612

  • [1] 邵凯花, 席忠红, 席保龙, 涂朴, 王青青, 马金萍, 赵茜, 石玉仁. 双组分玻色-爱因斯坦凝聚体中PT对称势下的异步量子Kármán涡街.  , 2024, 73(11): 110501. doi: 10.7498/aps.73.20232003
    [2] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学.  , 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [3] 席忠红, 赵永珍, 王光弼, 石玉仁. 环形运动势搅拌下偶极玻色-爱因斯坦凝聚体中的von Kármán涡街.  , 2023, 72(8): 080501. doi: 10.7498/aps.72.20222312
    [4] 张志强. 简谐与光晶格复合势阱中旋转二维玻色-爱因斯坦凝聚体中的涡旋链.  , 2022, 71(22): 220304. doi: 10.7498/aps.71.20221312
    [5] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [6] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散.  , 2020, 69(8): 080302. doi: 10.7498/aps.69.20200025
    [7] 赵文静, 文灵华. 半无限深势阱中自旋相关玻色-爱因斯坦凝聚体的量子反射与干涉.  , 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [8] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应.  , 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [9] 黄芳, 李海彬. 双势阱中玻色-爱因斯坦凝聚的绝热隧穿.  , 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [10] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为.  , 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [11] 徐岩, 贾多杰, 李照鑫, 侯风超, 谭磊, 张鲁殷. 大N近似下旋量玻色-爱因斯坦凝聚的基态能级分裂.  , 2009, 58(1): 55-60. doi: 10.7498/aps.58.55
    [12] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性.  , 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [13] 李菊萍, 谭 磊, 臧小飞, 杨 科. 偶极旋量玻色-爱因斯坦凝聚体在外场中的自旋混合动力学.  , 2008, 57(12): 7467-7476. doi: 10.7498/aps.57.7467
    [14] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性.  , 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [15] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响.  , 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [16] 臧小飞, 李菊萍, 谭 磊. 偶极-偶极相互作用下双势阱中旋量玻色-爱因斯坦凝聚磁化率的非线性动力学性质.  , 2007, 56(8): 4348-4352. doi: 10.7498/aps.56.4348
    [17] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应.  , 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [18] 王翀, 闫珂柱. 简谐势阱中非理想气体玻色-爱因斯坦凝聚转变温度的数值研究.  , 2004, 53(5): 1284-1288. doi: 10.7498/aps.53.1284
    [19] 徐 岩, 贾多杰, 李希国, 左 维, 李发伸. 大N近似下玻色-爱因斯坦凝聚体中单个涡旋态的解.  , 2004, 53(9): 2831-2834. doi: 10.7498/aps.53.2831
    [20] 王德重, 陆兴华, 黄 湖, 李师群. 旋转对称W型势阱中玻色-爱因斯坦凝聚环.  , 1999, 48(7): 1192-1197. doi: 10.7498/aps.48.1192
计量
  • 文章访问数:  6092
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-28
  • 修回日期:  2018-09-26
  • 刊出日期:  2018-12-05

/

返回文章
返回
Baidu
map