搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法

李树

引用本文:
Citation:

光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法

李树

Monte Carlo method for computing relativistic photon-Maxwellian electron scattering cross sections

Li Shu
PDF
导出引用
  • 高温全电离等离子体的辐射输运问题中,光子与电子的Compton散射与逆Compton散射是其中重要的特性,光子与相对论麦克斯韦电子散射的描述及截面的计算非常复杂且费时.本文提出了一种用于模拟计算光子与相对论麦克斯韦速度分布电子散射截面的蒙特卡罗计算方法.给出了各步骤的具体实现办法,推导了对应的计算公式,研究了相对论电子速率抽样方法,编写了光子与相对论电子散射的微观截面的蒙特卡罗计算程序.开展了高温全电离等离子体中,不同能量光子与不同温度电子散射的微观散射截面计算和分析.模拟计算结果显示,在电子温度低于25 keV情况下,本文方法与多重数值积分方法的计算结果非常接近;但随着电子温度继续升高,二者差异逐渐增大并较明显,经分析,可能是本文方法目前的电子速率抽样偏差所致,希望将来能够找到更好的相对论电子速率抽样方法以克服此缺陷.
    Compton and inverse Compton scattering from relativistic Maxwellian electrons both have an important feature, i.e. calculating the radiation transport in high-temperature and full-ionized plasma. Description and evaluation of relativistic photon-Maxwellian electron scattering are numerically complex and computationally time consuming. A Monte Carlo method is proposed to simulate photon scattering with relativistic Maxwellian electron and compute the scattering cross-sections. To compute the total cross-section of a photon of energy hν interacting with electrons at temperature Te in the laboratory coordinate, the calculation steps of Monte Carlo scheme are described as follows. The first step is to sample the velocity of an electron, the directions are isotropically sampled, and the speed is sampled from the relativistic Maxwellian distribution at temperature Te. The second step is to transform the photon energy hν into the photon energy in the coordinate in which the electron is at rest. The third step is to use the exact Klein-Nishina formula to compute the cross-sections. The fourth step is go back to the first step, and cycle this many times. The last step is to summarize all computed cross-sections and averaged them, and the average value is what we need. The operation and corresponding formula for each step are described in this paper. A better method of sampling the speed of a relativistic electron is expected to be found.A Monte Carlo processor is developed to compute the scattering cross-section of a photon of any energy, interacting with electrons at any temperature. To check this method, scatterings of the photons of various energies with electrons with various temperatures are simulated, and the results are compared with those from the numerical integration method. The comparison indicates that the simulated cross-sections are in pretty good agreement with those from the multiple integration method for the cases of electron temperature less than 25 keV. But unfortunately, the difference is obvious for the case of temperature more than 25 keV, and the error increases with temperature increasing. Why so? When the temperature is more than 25 keV, the sampling of electron speed is inaccurate when using the present method, which maybe results in this difference. So, we need to find a more accurate method of sampling relativistic electron speed to solve this problem in the future.
      通信作者: 李树, li_shu@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11775033,11775030)和中国工程物理研究院于敏基金(批准号:FZ025)资助的课题.
      Corresponding author: Li Shu, li_shu@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775033, 11775030) and the Yumin Foundation of China Academy of Engineering Physics (Grant No. FZ025).
    [1]

    Yu M 1996 Selected Papers of Yu Min (Beijing: Institute of Applied Physics and Computational Mathematics) p102 (in Chinese)[于敏 1996 于敏论文集(北京: 北京应用物理与计算数学研究所) 第102页]

    [2]

    Pomraning G C 1973 The Equations of Radiation Hydrodynamics (Oxford: Pergamon Press) p183

    [3]

    Evans R D 1955 The Atomic Nucleus (New York: McGraw-Hill Press) p677

    [4]

    Lux I, Koblinger L 1991 Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (Boston: CRC Press) p45

    [5]

    Hastings C J 1955 Approximations for Digital Computers (Princeton: Princeton University Press) p154

    [6]

    Wienke B R 1973 Nuclear Science and Engineering 52 247

    [7]

    Cooper G E 1974 J. Quant. Spectr. Rad. Transfer 14 887

    [8]

    Wienke B R 1975 J. Quant. Spectr. Rad. Transfer 15 151

    [9]

    Wienke B R, Lathrop B L 1984 J. Comp. Phys. 53 331

    [10]

    Brinkmann W 1984 J. Quant. Spectrosc. Radiat. Transfer 31 417

    [11]

    Wienke B R, Hendricks J S, Booth T E 1985 J. Quant. Spectr. Rad. Transfer 33 555

    [12]

    Wienke B R, Lathrop B L, Devaney J J 1986 Radiation Effects 94 303

    [13]

    Prasad M K, Kershaw D S, Beason J D 1986 Applied Physics Letters 48 1193

    [14]

    Kershaw D S 1987 J. Quant. Spectr. Rad. Transfer 38 347

    [15]

    Shestakov A I, Kershaw D S, Prasad M K 1988 J. Quant. Spectr. Rad. Transfer 40 577

    [16]

    Webster J B, Stephan B G, Bridgman C J 1973 Trans. Amer. Nucl. Soc. 17 574

    [17]

    Wienke B R, Lathrop B L, Devaney J J 1984 Nuclear Sci. Eng. 88 71

    [18]

    Booth T E, Hendricks J S 1985 Nuclear Sci. Eng. 90 248

    [19]

    Pomraning G C 1972 J. Quant. Spectr. Rad. Transfer 12 1047

    [20]

    Pomraning G C 1973 The Equations of Radiation Hydrodynamics (Oxford: Pergamon Press) p185

    [21]

    Mohamed N M A 2014 Theory Probab. Appl. 58 698

    [22]

    Wienke B R 1975 Am. J. Phys. 43 317

  • [1]

    Yu M 1996 Selected Papers of Yu Min (Beijing: Institute of Applied Physics and Computational Mathematics) p102 (in Chinese)[于敏 1996 于敏论文集(北京: 北京应用物理与计算数学研究所) 第102页]

    [2]

    Pomraning G C 1973 The Equations of Radiation Hydrodynamics (Oxford: Pergamon Press) p183

    [3]

    Evans R D 1955 The Atomic Nucleus (New York: McGraw-Hill Press) p677

    [4]

    Lux I, Koblinger L 1991 Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (Boston: CRC Press) p45

    [5]

    Hastings C J 1955 Approximations for Digital Computers (Princeton: Princeton University Press) p154

    [6]

    Wienke B R 1973 Nuclear Science and Engineering 52 247

    [7]

    Cooper G E 1974 J. Quant. Spectr. Rad. Transfer 14 887

    [8]

    Wienke B R 1975 J. Quant. Spectr. Rad. Transfer 15 151

    [9]

    Wienke B R, Lathrop B L 1984 J. Comp. Phys. 53 331

    [10]

    Brinkmann W 1984 J. Quant. Spectrosc. Radiat. Transfer 31 417

    [11]

    Wienke B R, Hendricks J S, Booth T E 1985 J. Quant. Spectr. Rad. Transfer 33 555

    [12]

    Wienke B R, Lathrop B L, Devaney J J 1986 Radiation Effects 94 303

    [13]

    Prasad M K, Kershaw D S, Beason J D 1986 Applied Physics Letters 48 1193

    [14]

    Kershaw D S 1987 J. Quant. Spectr. Rad. Transfer 38 347

    [15]

    Shestakov A I, Kershaw D S, Prasad M K 1988 J. Quant. Spectr. Rad. Transfer 40 577

    [16]

    Webster J B, Stephan B G, Bridgman C J 1973 Trans. Amer. Nucl. Soc. 17 574

    [17]

    Wienke B R, Lathrop B L, Devaney J J 1984 Nuclear Sci. Eng. 88 71

    [18]

    Booth T E, Hendricks J S 1985 Nuclear Sci. Eng. 90 248

    [19]

    Pomraning G C 1972 J. Quant. Spectr. Rad. Transfer 12 1047

    [20]

    Pomraning G C 1973 The Equations of Radiation Hydrodynamics (Oxford: Pergamon Press) p185

    [21]

    Mohamed N M A 2014 Theory Probab. Appl. 58 698

    [22]

    Wienke B R 1975 Am. J. Phys. 43 317

  • [1] 张显, 刘仕倡, 魏军侠, 李树, 王鑫, 上官丹骅. 结合源偏倚和权窗的蒙特卡罗全局减方差方法.  , 2024, 73(4): 042801. doi: 10.7498/aps.73.20231493
    [2] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法.  , 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [3] 上官丹骅, 闫威华, 魏军侠, 高志明, 陈艺冰, 姬志成. 多物理耦合计算中动态输运问题高效蒙特卡罗模拟方法.  , 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [4] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失.  , 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [5] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟.  , 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [6] 上官丹骅, 姬志成, 邓力, 李瑞, 李刚, 付元光. 蒙特卡罗临界计算全局计数问题新策略研究.  , 2019, 68(12): 122801. doi: 10.7498/aps.68.20182276
    [7] 李树. 光子与相对论麦克斯韦分布电子散射的能谱角度谱研究.  , 2019, 68(1): 015201. doi: 10.7498/aps.68.20181796
    [8] 上官丹骅, 邓力, 张宝印, 姬志成, 李刚. 非定常输运问题适应于消息传递并行编程环境的香农熵计算方法.  , 2016, 65(14): 142801. doi: 10.7498/aps.65.142801
    [9] 上官丹骅, 邓力, 李刚, 张宝印, 马彦, 付元光, 李瑞, 胡小利. 蒙特卡罗临界计算全局计数效率新算法研究.  , 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [10] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究.  , 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [11] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟.  , 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [12] 文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏. 蒙特卡罗模拟中相关变量随机数序列的产生方法.  , 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [13] 李鹏, 许州, 黎明, 杨兴繁. 金刚石薄膜中二次电子输运的蒙特卡罗模拟.  , 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [14] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真.  , 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [15] 李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩. 神光Ⅱ激光装置黑腔辐射温度定量研究.  , 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [16] 赵学峰, 李三伟, 蒋刚, 王传珂, 李志超, 胡峰, 李朝光. 超热电子与金黑腔靶作用产生硬X射线的蒙特卡罗模拟.  , 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [17] 陶应龙, 王建国, 牛胜利, 朱金辉, 范如玉. 高空核爆炸瞬发辐射电离效应的数值模拟.  , 2010, 59(8): 5914-5920. doi: 10.7498/aps.59.5914
    [18] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟.  , 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [19] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真.  , 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [20] 郝樊华, 胡广春, 刘素萍, 龚 建, 向永春, 黄瑞良, 师学明, 伍 钧. 钚体源样品γ能谱计算的蒙特卡罗方法.  , 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
计量
  • 文章访问数:  6360
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-10
  • 修回日期:  2018-08-16
  • 刊出日期:  2018-11-05

/

返回文章
返回
Baidu
map